

In-situ-Laser-Analysator ILA1-X000-EX

ILA1-A000-EX, ILA1-B000-EX

Betriebsanleitung Version 1.00.00 Software-Version ab 1.0

Sehr geehrter Kunde,

vielen Dank, dass Sie sich für unser Produkt entschieden haben. Diese Betriebsanleitung enthält alle notwendigen Informationen zu diesem M&C-Produkt. In dieser Betriebsanleitung sind alle Informationen schnell und einfach zu finden, sodass Sie Ihr M&C-Produkt sofort in Betrieb nehmen können, sobald Sie das Handbuch gelesen haben.

Falls Sie Fragen zu dem Produkt oder zur Anwendung haben, können Sie jederzeit M&C oder Ihren autorisierten M&C-Fachhändler kontaktieren. Die Kontaktdaten sind im Anhang des Handbuchs aufgeführt.

Weitergehende Informationen zu unseren Produkten und unserem Unternehmen können Sie der M&C-Webseite entnehmen unter <u>http://www.mc-techgroup.com</u>. Dort finden Sie die Datenblätter und die Handbücher auf Deutsch und Englisch.

Haftungsausschluss

Diese Betriebsanleitung erhebt keinen Anspruch auf Vollständigkeit und kann technischen Änderungen unterliegen. © 04/2025 M&C TechGroup Germany GmbH. Die Reproduktion dieses Dokumentes oder seines Inhaltes ist nicht gestattet und bedarf der ausdrücklichen Genehmigung durch M&C.

Mit Veröffentlichung dieser Version verlieren alle älteren Handbuchversionen ihre Gültigkeit. Die deutsche Betriebsanleitung ist die Originalbetriebsanleitung. Im Falle eines Schiedsverfahrens ist nur die deutsche Version gültig und verbindlich.

Version: 1.00.00 Software-Version ab 1.0

Inhaltsverzeichnis

1	Allg	emeine Informationen	7
2	Kon	formitätserklärung	7
3	Gew	rährleistung	8
4	Wic	ntige Sicherheitsinformationen	8
	4.1	Warnzeichen und Definitionen	8
	4.2	Bestimmungsgemäßer Gebrauch	
	4.3	Vernünftigerweise vorhersehbare Fehlanwendung	11
	4.4	Sicherheitsanweisungen zur Nutzung des Analysators in explosionsgefährdeten Bereichen	12
5	Proc	luktüberblick	13
	5.1	Beschreibung	14
	5.2	Funktionsweise	
	5.3	Messeinflüsse	
	5.3.1	Strömungsbedingungen an der Messstelle	17
	5.3.2	Spülung	17
6	Tech	nnische Daten	18
	6.1	Schnittstellen	
	6.2	Abmessungen und Gewichte (Beispielsonden)	18
	6.3	Werkstoffauswahl	
	6.4	Technische Daten des Gesamtsystems	20
	6.5	Lasersicherheit	
	6.6	Ex-Sicherheit	22
	6.7	Umgebungsbedingungen	22
	6.8	Optionen	23
	6.9	Technische Zeichnungen	24
7	War	enempfang	25
	7.1	Lieferumfang	25
	7.2	Typenbezeichnung	
	7.3	Typenschild, Seriennummer und Laserkennzeichnung	27
	7.4	Kalibrierung des In-situ-Laser-Analysators	
	7.5	Unbeheizte Kalibrierkappe	
	7.5.1	Drucksensor	
	7.5.2	Leistung eines typischen Drucksensors	29
	7.5.3	Leistung eines typischen Temperatursensors	
8	Inst	allation	32
	8.1	Sicherheitsinformationen	
	8.2	Informationen zur ATEX-Installation	
	8.3	Zünddurchschlagssichere Spalte am Ex-d-Gehäuse, Luft- und Kriechstrecken am Ex-e-Klemmenl	kasten
	8.4	Umgebungstemperaturanforderungen zur Inbetriebnahme	
	8.5	Auswahl der Messstelle	
	8.6	Installation des Prozessflansches durch den Kunden	35
	8.7	Informationen zur optischen Weglänge	
	8.8	Montage des In-situ-Laser-Analysator	
9	Ans	chluss der Spülrohre	40
	9.1	Spülen des Laserkopfes	40
	9.2	Spülen der Pufferzone zwischen Laserkopf und Prozessflansch	41
	9.3	Spülung der Keilfenster und des Retroreflektors innerhalb des Prozesses	42
	9.3.1	Einstellung des Spüldrucks	43
1	0 Elek	trische Anschlüsse	44
	10.1	Für die Anschlüsse verwendete Kabel	45
	10.2	Alternative Kabelwahl	45

10.3 Anschließen der Klemmen im Ex-e-Klemmenkasten	
10.3.1 Aktive Analogausgänge	51
10.3.2 Aktive oder passive Analogeingänge	51
10.4 Anschluss für Potentialausgleich am Gehäuse	
11 Batteriebetriebene Real-Time Clock (RTC)	53
12 Ausrichtung des In-situ-Laser-Analysators	53
12.1 Laserkopfausrichtung für die Voreinstellung des Analysators	
12.2 Ausrichten des In-situ-Laser-Analysators mit der Justageeinheit	
13 Anzeige- und Bedieneinheit (HMI)	57
13.2 Informationen zur ATEX-Installation	
13.3 Zünddurchschlagssichere Spalte an der druckfesten Kapselung (Ex-d-Gehäuse)	
13.4 Anschluss des HMI an den In-situ-Laser-Analysator	
13.4.1 Elektrische Kabel für den Anschluss des HMI an den In-situ-Laser-Analysator	60
13.4.2 Alternative Kabelwahl	60
13.5 Ex-d-zertifizierte Kabelverschraubung mit Epoxidharz für Längsdichtigkeit	60
13.5.1 Installationshinweise für den Typ PXSS2K-REX	61
13.6 Anschluss der Klemmen innerhalb des HMI	61
13.7 Anschluss des Potenzialausgleichs an das HMI-Gehäuse	64
13.8 Inbetriebnahme des HMI	65
13.9 Menüführung	65
13.9.1 Messungen	67
13.9.2 Parameter	68
13.9.3 Analogeingänge und -ausgänge (IOs)	69
13.10 Status	70
13.11 Tasten auf dem HMI	70
13.12 Admin-Passwort	71
13.13 Service-Menüführung	72
14 WebServer-Anwendung	72
14.1 Kommunikationsaufbau mit dem ILA1-X000-EX	72
14.2 Webserver – Messfenster	74
14.3 Zugang zum Konfigurationsmenü	75
14.4 Webservice – Konfigurationsmenü	76
15 Inbetriebnahme des In-situ-Laser-Analysators	77
16 Außerbetriebnahme	
17 Wartung	78
17.1 Reinigung des Lasergehäuses	79
17.2 Reinigung der Optik	80
18 Demontage des In-situ-Laser-Analysators	80
19 Entsorgung	81
20 Risikobeurteilung	81
21 Troubleshooting	84
22 Anhang 1: Modbus TCP-Konfiguration	89
23 Anhang 2: Modbus RTU-Konfiguration	90
24 Anhang 3: Batteriedaten	93
25 Anhang 4: ATEX-Einzelheiten	94
26 Anhang 5: Zertifikate	96

Abbildungsverzeichnis

Abbildung 1: Geräteaufbau ILA1-X000-EX In-situ-Laser-Analysator	.13
Abbildung 2: Gewindestift nur für die Wartung durch M&C	.13
Abbildung 3: Spülgasanschlüsse für Sonde und Pufferzone	.14

Abbildung 4: Typischer Aufbau des ILA1-X000-EX In-situ-Laser-Analysators	15
Abbildung 5: Wellenlänge Scanning-Prozess	
Abbildung 6: Anpassung des Spülgasdurchflusses	17
Abbildung 7: ILA1-B000-EX-PXX20	
Abbildung 8: ILA1-B000-EX-PXX20 mit Justier- und Isoliereinheit, Filter und Verlängerung	25
Abbildung 9: ILA1-A000-EX-PXX80 mit Justier- und Isoliereinheit, Filter und Verlängerung	25
Abbildung 10: Produktkennzeichen für ATEX-Version	
Abbildung 11: Struktur der Seriennummer des In-situ-Laser-Analysators	
Abbildung 12: Laserkennzeichnung	27
Abbildung 13: Aufbau der Kalibrierung mit unbeheizter Kalibrierkappe	
Abbildung 14: Montage eines In-situ-Laser-Analysators in Ex-Zonen	
Abbildung 15: Schematische Zeichnung der Installation des Standard-Prozessflansches	
Abbildung 16: Schematische Zeichnung der optischen Weglänge	
Abbildung 17: Explosionsansicht des gesamten Laser-Analysators	
Abbildung 18: Explosionsansicht außerhalb des Prozesses	
Abbildung 19: Schematische Zeichnung der Installation des Spülrohrs	42
Abbildung 20: Durchflusseinstellung für die Spülung	43
Abbildung 21: Druckeinstellungen im Messsystem	44
Abbildung 22: Deckel des Ex-Anschlusskastens	
Abbildung 23: Anschlussklemmen im Klemmenkasten: MTP1.5/S; MTP2.5-PE	
Abbildung 24: Kommunikationsschema des ILA1-X000-EX	47
Abbildung 25: Analysator/HMI-Anschluss – aktive Temperatur-/Drucksonden	
Abbildung 26: Analysator/HMI-Anschluss – passive Temperatur-/Drucksonden	
Abbildung 27: Exemplarische Verwendung des aktiven Analogausgangs	
Abbildung 28: Verwendung eines aktiven oder passiven analogen Temperatureingangs mit entgegengesetz	zter
Polarisierung	51
Abbildung 29: Verwendung eines aktiven oder passiven analogen Druckeingangs mit entgegengesetzter	
Polarisation	
Abbildung 30: Anschluss für Potentialausgleich	52
Abbildung 31: Transmissionsmessung mit einem Multimeter	
Abbildung 32: Klemme am Laserkopf	55
Abbildung 33: Fensterorientierung	55
Abbildung 34: Ausrichtung mit der Justageeinheit	
Abbildung 35: HMI-Display mit Standardprozessparametern	
Abbildung 36: Zünddurchschlagssichere Spalte am HMI-Gehäuse	
Abbildung 37: Platine und Display im HMI-Gehäuse	
Abbildung 38: Anschlüsse im Inneren des HMI-Gehäuses (Platine nicht abgebildet)	
Abbildung 39: Anschluss für Potentialausgleich	
Abbildung 40: HMI-Zugangssstruktur	65
Abbildung 41: HMI-Menüstruktur - Deutsch	
Abbildung 42: HMI-Display: Messungen	67
Abbildung 43: HMI-Tasten	70
Abbildung 44: HMI-Admin-Passwort – geben Sie XXXX ein, um zum Admin-Menü zu gelangen	71
Abbildung 45: Webserver-Konfiguration I	72
Abbildung 46: Webserver Konfiguration II	73
Abbildung 47: Webserver Konfiguration III	73
Abbildung 48: Webservice Benutzerzugangslevel – Messfenster	74
Abbildung 49: Webservice Login-Fenster	75
Abbildung 50: HMI-Display mit Standardprozessparametern	77
Abbildung 51: Webservice Benutzerzugangslevel – Messfenster	77
Abbildung 52: Risikobeurteilung	

Tabellenverzeichnis

Tabelle 1: Typenbezeichnung	
Tabelle 2 : Daten der Keller-35X-Serie	
Tabelle 3: Typische Längen der Abmessung A (TDL-Kopf)	
Tabelle 4: Typische Mindestdurchmesser für die Sonde	
Tabelle 5: Beschreibung der elektrischen Anschlussklemmen im Klemmenkasten	
Tabelle 6: Elektrische Anschlüsse im Inneren des HMI-Gehäuses	64
Tabelle 7: Beschreibung des HMI-Displays – Messungen	67
Tabelle 8: Beschreibung des HMI-Displays – Ausrichtung	68
Tabelle 9: Beschreibung der Einstellungen I im HMI	68
Tabelle 10: Beschreibung des "4-20 HMI"-Panel im HMI	69
Tabelle 11: Beschreibung der Input-Einstellungen "Analysator Kal." im HMI	69
Tabelle 12: Beschreibung der unterschiedlichen Status-Typen des Messgeräts	70
Tabelle 13: Beschreibung der Tastenfunktionalität	71
Tabelle 14: Funktionen Messfenster	74
Tabelle 15: Wartung am System	79
Tabelle 16: Troubleshooting am System	
Tabelle 17: Troubleshooting – Fehlercode-Liste	
Tabelle 18: Troubleshooting – Liste der Warncodes	
Tabelle 19: Modbus TCP-Registerkarte	90
Tabelle 20: Skalierung auf ganzzahligen Wert (0 - 27648) bei max. Fehlerstrom 22 mA	90
Tabelle 21: RS-485 Kommunikationseinstellungen (Modbus RTU)	91
Tabelle 22: Modbus-RTU Eingaberegisterkarte	92
Tabelle 23: Batteriemodell: ET2016C-H	
Tabelle 24 ATEX-Einzelheiten zum Laserkopf	94
Tabelle 25 ATEX-Einzelheiten von im System verwendeten Komponenten	

Hersteller (Hauptsitz)

Tel.: +49 2102 935-0

E-Mail: info@mc-techgroup.com

Website: <u>www.mc-techgroup.com</u>

1 Allgemeine Informationen

Das in diesem Handbuch beschriebene Produkt wurde in unserer Produktionsstätte hergestellt und getestet.

Alle M&C-Produkte werden für den sicheren Versand verpackt. Um den sicheren Betrieb zu gewährleisten und zur Erhaltung dieses Zustands müssen alle in diesem Handbuch aufgeführten Anweisungen und Vorschriften befolgt werden. Dieses Handbuch enthält alle Informationen über den ordnungsgemäßen Transport, die Lagerung, die Installation, den Betrieb und die Wartung dieses Produkts durch qualifiziertes Personal.

Befolgen Sie alle Anweisungen und Warnhinweise genau.

Lesen Sie diese Anleitung sorgfältig durch, bevor Sie das Gerät in Betrieb nehmen und bedienen. Wenn Sie Fragen zum Produkt oder zur Anwendung haben, wenden Sie sich bitte an M&C oder Ihren autorisierten M&C-Fachhändler.

2 Konformitätserklärung

CE-Kennzeichnung

Das in dieser Betriebsanleitung beschriebene Produkt entspricht den folgenden EU-Richtlinien:

ATEX-Richtlinie

Die ATEX-Version des in diesem Handbuch beschriebenen Produkts wurde in Übereinstimmung mit der EU-Richtlinie für Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen 2014/34/EU, Anhang II, hergestellt.

EMV-Richtlinie

Die Anforderungen der EU-Richtlinie 2014/30/EU "Elektromagnetische Verträglichkeit" werden erfüllt.

RoHS-Richtlinie

Die Anforderungen der RoHS2-Richtlinie 2011/65/EU ("Restriction of Hazardous Substances 2") und ihrer Anhänge werden erfüllt.

Konformitätserklärung

Die EU-Konformitätserklärung kann direkt bei M&C angefordert werden.

3 Gewährleistung

Im Falle eines Geräteausfalls wenden Sie sich bitte umgehend an M&C oder Ihren autorisierten M&C-Vertragshändler.

Wir bieten eine Gewährleistungsfrist von 12 Monaten ab dem Lieferdatum. Die Gewährleistung gilt nur für bestimmungsgemäß genutzte Produkte und umfasst keine Verschleißteile. Die vollständigen Gewährleistungsbedingungen finden Sie in unseren Allgemeinen Geschäftsbedingungen.

Die Gewährleistung beinhaltet eine kostenlose Reparatur in unserer Produktionsstätte oder den kostenlosen Austausch des Gerätes. Wenn Sie ein Gerät an M&C zurücksenden, achten Sie bitte darauf, dass es ordnungsgemäß verpackt und mit einer Schutzverpackung verschickt wird. Das reparierte oder ausgetauschte Gerät wird versandkostenfrei an den Verwendungsort geliefert.

4 Wichtige Sicherheitsinformationen

4.1 Warnzeichen und Definitionen

Vorsicht

Achtung

Qualifiziertes Personal

Das Warnzeichen "Gefahr" weist darauf hin, dass Tod, schwere Verletzungen und/oder erheblicher Sachschaden eintreten werden, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Das Warnzeichen "Warnung" weist darauf hin, dass Tod, schwere Verletzungen oder Sachschäden eintreten können, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Das Warnzeichen "Vorsicht" weist darauf hin, dass leichte Verletzungen auftreten können, wenn die entsprechenden Sicherheitsvorkehrungen nicht beachtet werden.

"Vorsicht" weist darauf hin, dass Sachschäden auftreten können, wenn die entsprechenden Sicherheitsvorkehrungen nicht beachtet werden.

"Achtung" bedeutet, dass ein unbeabsichtigtes Ergebnis oder eine unbeabsichtigte Situation eintreten kann, wenn die entsprechenden Informationen nicht berücksichtigt werden.

"Hinweis" bezeichnet wichtige Informationen über das Produkt oder hebt Teile der Dokumentation hervor, die besonders zu beachten sind.

"Qualifiziertes Personal" sind Fachkräfte, die mit der Installation, der Inbetriebnahme, der Wartung und dem Betrieb dieser Art von Produkten vertraut sind. Für die Arbeiten sind mindestens die folgenden Kenntnisse erforderlich:

- Unterweisungen im Explosionsschutz
- Elektrotechnische Ausbildung
- Detaillierte Kenntnisse der Betriebsanleitung und der relevanten Sicherheitsbestimmungen

Embracing Challenge

"Ex" verweist auf wichtige Informationen über das Produkt oder über die entsprechenden Teile in der Betriebsanleitung, die sich auf die Verwendung in explosionsgefährdeten Bereichen beziehen.

Heiße Oberfläche!

Berührung kann Verbrennungen verursachen! Nicht berühren!

Hochspannungen!

Schützen Sie sich und andere vor Schäden, die durch Hochspannungen verursacht werden können.

Giftig!

Akute Toxizität (oral, dermal, durch Einatmen)! Giftig bei Berührung mit der Haut, beim Verschlucken oder Einatmen

Korrosiv!

Diese Stoffe zerstören bei Kontakt lebendes Gewebe und Geräte. Dämpfe nicht einatmen; Kontakt mit Haut und Augen vermeiden.

Enthält Gas unter Druck. Behälter nicht öffnen! Vor dem Öffnen des Behälters Druck prüfen und auf atmosphärischen Druck einstellen.

Vorsicht Laserstrahl! Vermeiden Sie Augen- oder Hautkontakt mit dem Laserstrahl. Arbeiten am Laser-Analysator und an den Klemmen nur nach Abschalten des Lasers durchführen.

Tragen Sie Schutzhandschuhe! Bei Arbeiten mit Chemikalien, scharfen Gegenständen oder extrem hohen Temperaturen müssen Schutzhandschuhe getragen werden.

Tragen Sie eine Schutzbrille! Schützen Sie Ihre Augen bei der Arbeit mit Chemikalien oder scharfen Gegenständen Tragen Sie eine Schutzbrille um zu vermeiden dass et

Gegenständen. Tragen Sie eine Schutzbrille, um zu vermeiden, dass etwas in Ihre Augen gerät.

Tragen Sie Schutzkleidung! Die Arbeit mit Chemikalien, scharfen Gegenständen oder extrem hohen Temperaturen erfordert das Tragen von Schutzkleidung.

4.2 Bestimmungsgemäßer Gebrauch

Beachten Sie die folgenden Sicherheitsvorkehrungen während der Installation, der Inbetriebnahme und des Betriebs des Gerätes:

- Lesen Sie diese Betriebsanleitung, bevor Sie das Produkt in Betrieb nehmen und bedienen. Beachten Sie unbedingt alle Warn- und Sicherheitshinweise.
- Die Installation und Inbetriebnahme elektrischer Geräte darf nur von qualifiziertem Fachpersonal unter Einhaltung der geltenden Vorschriften durchgeführt werden. Alle elektrischen Anschlussarbeiten dürfen nur von entsprechend qualifizierten Elektrofachkräften (IEC 60079-14) durchgeführt werden.
- Beachten Sie alle relevanten nationalen und internationalen Vorschriften und Normen für die Verwendung des Gerätes in explosionsgefährdeten Bereichen.
- Bevor Sie das Gerät anschließen, vergleichen Sie bitte die Versorgungsspannung mit der auf dem Produktschild angegebenen Spannung.
- Betreiben Sie das Gerät nur in den zulässigen Temperatur- und Druckbereichen. Details entnehmen Sie bitte dem technischen Datenblatt bzw. der Betriebsanleitung.
- Installieren Sie das Gerät nur in geschützten Bereichen, die vor Sonne, Regen und Feuchtigkeit geschützt sind. Vermeiden Sie zusätzliche Wärmequellen neben dem Anschlussflansch.
- Bei der Arbeit mit giftigen und gesundheitsgefährdenden Messgasen müssen Schutzmaßnahmen gegen unbeabsichtigtes Austreten getroffen werden, z.B. durch unerwartete Beschädigung des Keilfensters, der zugehörigen Schläuche oder Schlauchverbindungen.
- Für den bauseitigen Anschluss an die Klemmen im Ex e Klemmenkasten sind die Luft- und Kriechstrecken nach IEC 60079-7, Tabelle 1, einzuhalten. Für die Nennspannung 24 V DC (< 32 V DC) ist beim Anschluss der einzelnen Adern an die Reihenklemmen eine Mindestkriechstrecke von 1,8 mm einzuhalten.
- Die Wartung des Laser-Analysators ist nur im spannungsfreien Zustand durchzuführen.
- Das Öffnen des Gehäuses eines In-situ-Laser-Analysators in Ex-Ausführung und des HMI ist nur in einer nicht explosionsgefährdeten Umgebung zulässig.

Wenn Sie sich bei der Handhabung und Inbetriebnahme des Systems unsicher sind, wenden Sie sich an M&C TechGroup Germany GmbH oder einen M&C-Vertreter, um weitere Informationen oder Unterstützung zu erhalten.

4.3 Vernünftigerweise vorhersehbare Fehlanwendung

Stellen Sie sicher, dass Sie den Analysator nur für den in dieser Betriebsanleitung beschriebenen Verwendungszweck installieren und betreiben.

Eine unsachgemäße Installation und Bedienung der Gehäuse kann zum Erlöschen der Garantie führen.

Die Gehäuse dürfen nicht beschädigt werden.

Das Gerät muss so installiert und verwendet werden, dass es nicht zu elektrostatischen Aufladungen durch Betrieb, Wartung oder Reinigung kommt.

Die Werkstoffe des Laser-Analysators, die mit dem Prozessgas in Berührung kommen, müssen für die Anwendung geeignet sein.

Um den Analysator in Betrieb nehmen zu können, muss er sicher aufgestellt werden.

Montieren, warten oder demontieren Sie das Gerät nicht mit angeschlossenem Netzkabel.

Tragen Sie stets persönliche Schutzausrüstung (PSA) entsprechend der Risikobewertung.

Während des Betriebs darf die Umgebungstemperatur die in der Spezifikation angegebenen Werte nicht überschreiten.

In explosionsgefährdeten Bereichen (Zonen) dürfen nur In-situ-Laser-Analysatoren verwendet werden, die in die entsprechende Gerätekategorie, Explosionsgruppe und Temperaturklasse eingestuft sind. Die Ex-Kennzeichnungen sind auf dem Typenschild eindeutig angegeben.

Verwenden Sie den In-situ-Laser-Analysator ohne Ex-Kennzeichnung nicht in explosionsgefährdeten Bereichen.

4.4 Sicherheitsanweisungen zur Nutzung des Analysators in explosionsgefährdeten Bereichen

Die Ex-Version des In-situ-Laser-Analysators ist für die Installation in explosionsgefährdeten Bereichen der ATEX-Zonen 1 und 21 zugelassen. Die Explosionsschutzkennzeichnung des ILA1-X000-EX ist folgendermaßen:

T_{Umgebung} -40 °C bis +59 °C EX II (1)2 G Ex db eb [op is Ga] IIC T6 Gb EX II (1)2 D Ex tb [op is Da] IIIC T85 °C Db

T_{Umgebung} -40 °C bis +65 °C EX II (1)2 G Ex db eb [op is Ga] IIC T5 Gb EX II (1)2 D Ex tb [op is Da] IIIC T92 °C Db

Die Baumusterprüfbescheinigung des Gerätes wird vom IBExU Institut für Sicherheitstechnik GmbH, einem An-Institut der TU Bergakademie Freiberg, ausgestellt. Eine Kopie der Baumusterprüfbescheinigung IBExU24ATEX1007 X, IECEx IBE 24.0007X finden Sie in den entsprechenden Ausgaben im Anhang dieser Betriebsanleitung.

Qualifiziertes Personal

Der In-situ-Laser-Analysator darf nur durch qualifiziertes Personal installiert werden. Qualifiziertes Personal muss mindestens über folgende Kenntnisse verfügen:

- Unterweisungen im Explosionsschutz
- elektrotechnische Ausbildung
- detaillierte Fachkenntnisse der Betriebsanleitung und der geltenden Sicherheitsbestimmungen.

Installieren, warten oder reparieren Sie den In-situ-Laser-Analysator nicht, wenn eine explosive Atmosphäre vorhanden ist.

Öffnen Sie den Anschlusskasten und das HMI nicht in explosionsgefährdeten Bereichen.

Öffnen Sie das Aluminiumgehäuse des Laserkopfes nicht in einem explosionsgefährdeten Bereich. Die Kondensatoren sind nach 4 Sekunden entladen, aber es gibt eine Batterie zur Versorgung der RTC (Real-Time Clock = Echtzeituhr), die für mehrere Jahre geladen ist!

Ein leicht zugänglicher Hauptschalter mit entsprechender Beschriftung muss extern vorhanden sein.

Wird die Standardkonfiguration durch Verwendung von nicht spezifizierten und von M&C nicht genehmigten Komponenten oder Teilen verändert, verliert die Baumusterprüfbescheinigung ihre Gültigkeit. Reparaturen und Serviceleistungen mit Teilen, die nicht von M&C spezifiziert sind, führen ebenfalls zum Erlöschen der Ex-Bescheinigung.

Wenn Sie Fragen oder Zweifel in Bezug auf Komponenten oder Reparaturen und Dienstleistungen haben, kontaktieren Sie bitte M&C oder einen unserer offiziellen Vertriebspartner.

Produktüberblick 5

Die folgenden Abbildungen zeigen den Aufbau des In-situ-Laser-Analysators mit den Bezeichnungen der externen mechanischen Teile.

- ③ Kabelverschraubungen
- S Klemmen
- ⑦ Isolierereinheit (optional f
 ür Prozesse) mit hohen Temperaturen)
- ① Sonde mit montiertem Filterelement (Filterelement optional)
- **②** TDL-Laserkopf
- ④ Gasanschluss
- © Justageeinheit zur Ausrichtung des Laserkopfs
- Spülgasanschluss für die Sonde
- [®] Sondenverlängerung, um die Sonde in die gewünschte Position zu bringen (optional) ILA HMI DCU10 EX für ILA1-X000-EX (optional)

Abbildung 1: Geräteaufbau ILA1-X000-EX In-situ-Laser-Analysator

① Gewindestift nur für die Wartung durch M&C. Abbildung 2: Gewindestift nur für die Wartung durch M&C

● Spülgasanschluss für die Sonde (Darstellung ohne Swagelok®-Verbinder)

② Spülgasanschluss für die Pufferzone (Darstellung ohne Swagelok®-Verbinder)

Abbildung 3: Spülgasanschlüsse für Sonde und Pufferzone

5.1 Beschreibung

Der In-situ-Laser-Analysator ILA1-X000-EX ist ein Hochleistungsanalysator für industrielle und mögliche Compliance-Anwendungen.

Der In-situ-Laser-Analysator ILA1-X000-EX besteht aus einer Sonde mit Messsektion, Sondenflansch und Laserkopf sowie einer separaten HMI-Einheit (optional). Der Sender und der Empfänger befinden sich im Laserkopf, der Retroreflektor ist in der Spitze der Sonde in der Messsektion untergebracht.

Der Laser im Laserkopf sendet einen Laserstrahl aus, der das Prozessgas durchdringt. Der Retroreflektor am Ende der Messsektion reflektiert den Strahl zurück zum Empfänger im Laserkopf. Ein integriertes System zur kontinuierlichen N₂- und Instrumentenluftspülung (im Fall von ILA1-A000-EX keine Instrumentenluft) verhindert, dass sich Staub und andere Verunreinigungen auf Reflektor und Fenster ablagern. Der Betrieb, die Konfiguration und die Diagnose des ILA1-X000-EX können entweder über das externe HMI (optional) oder ein Web-Interface erfolgen. Anwendungsbeispiele sind Echtzeitmessungen für die Verbrennungsregelung, Sicherheitsüberwachung und Prozesssteuerung. Branchen, die von dieser Messtechnologie profitieren können, umfassen chemische und petrochemische Anlagen, Kraftwerke, Müllverbrennungsanlagen und die Stahlindustrie.

Der ILA1-X000-EX eignet sich besonders für die Steuerung von Verbrennungsprozessen, zur Prozessoptimierung und -steuerung, zur Gewährleistung der Anlagen- und Arbeitssicherheit, zum Explosionsschutz, zur Qualitätskontrolle und zur Messung in korrosiven und toxischen Gasen.

Die herausragenden Eigenschaften sind wie folgt:

- Störungsfreie In-situ-Messtechnik
- 12-monatliches Inspektionsintervall ist empfehlenswert
- Äußerst flexible Schnittstelle für Prozessanschlüsse
- Diverse Weglängen verfügbar für verschiedene Anwendungen
- Breites Spektrum an Werkstoffen für medienberührende Teile (Temperatur und versch. Medien)
- Einfache Installation mit einem Prozessflansch
- Keine Vorjustierung der Flansche erforderlich
- Ex-Version zugelassen für explosionsgefährdete Bereiche der ATEX-Zone 1

Abbildung 4: Typischer Aufbau des ILA1-X000-EX In-situ-Laser-Analysators

5.2 Funktionsweise

Der In-situ-Laser-Analysator nutzt ein Prinzip, das als Tunable Diode Laser Absorption Spectroscopy (TDLAS) bezeichnet wird, um die molekulare Konzentration eines bestimmten Gases zu analysieren. Das Prinzip basiert auf der Lichtabsorption von Gasmolekülen. Bestimmte Gasmoleküle absorbieren bestimmte Farben in einem engen Frequenzbereich; dieser schmale Frequenzbereich wird als Absorptionsspektrallinie bezeichnet. Eine ausgewählte Halbleiterlaserquelle wird so eingestellt, dass sie die Absorptionsspektrallinie des zu messenden Gasmoleküls kontinuierlich abtastet.

Die Menge des Laserlichts, die von einem bestimmten Gas absorbiert wird, kann zur Bestimmung der Konzentration dieses Gases verwendet werden. Die folgende Abbildung zeigt die Laserlinie, die eine Absorptionslinie eines Gasmoleküls erfasst.

Abbildung 5: Wellenlänge Scanning-Prozess

5.3 Messeinflüsse

Die Messung kann durch Temperatur, Druck, eine hohe Staubbelastung oder andere Gase beeinflusst werden.

Die Einflüsse von Temperatur, Druck, Staubbelastung und anderen Gasen werden normalerweise vom Analysator kompensiert. Typische Einschränkungen am Drucksensor sind jedoch:

Einfluss des Messgasdrucks: ±0,4 % des Bereichs z.B. max. Prozessgasdruck: 5 bar(a)

- 10 mbar sind gleich einer Abweichung von 0,25 % am TDL
- => Mindestqualität: ±16 mbar bei 5 bar(a)
 - $\Rightarrow \pm 0,32$ % bei einem 5 bar (a) Sensor;

In der Regel wird die Toleranz als Prozentsatz des Skalenendwerts angegeben; beträgt die Druckabstufung z.B. 10 bar(a), so halbiert sich die zulässige Toleranz des Drucksensors.

 \Rightarrow ±0,16 % bei einem 10 bar (a) Sensor

5.3.1 Strömungsbedingungen an der Messstelle

Bei der Wahl der Messstelle für den ILA1-X000-EX empfehlen wir eine gerade Strecke mit einer Länge von mindestens dem 5-fachen Rohrdurchmesser vor der Messstelle und mindestens dem 3-fachen Rohrdurchmesser nach der Messstelle. So können laminare Strömungsverhältnisse entstehen, die eine Voraussetzung für stabile Messbedingungen sind.

5.3.2 Spülung

Die Durchflussmenge während der Spülung beeinflusst die effektive Länge des optischen Pfads und damit den Messwert. Es wird empfohlen, mit einem hohen Durchfluss des Spülgases zu beginnen und diesen allmählich zu verringern, insbesondere wenn das Prozessgas viel Feuchtigkeit enthält, um Kondensation auf den Keilfenstern zu vermeiden. Der Messwert ist anfangs sehr klein und steigt mit abnehmendem Spülgasdurchfluss an. An einem bestimmten Punkt pendelt er sich ein und bleibt eine Zeit lang konstant, bis er wieder ansteigt. Wählen Sie einen Spülgasdurchfluss, der in der Mitte dieses konstanten Bereichs liegt. Dieser Effekt ist bei kurzen Sonden stärker ausgeprägt als bei langen Sonden.

Achtung

Wenn der Prozessgasstrom konstant bleibt, ergibt sich ein guter Spülgasdurchfluss. Die effektive Länge des optischen Weges bleibt jedoch immer eine Funktion des Prozessgasstroms und muss daher immer berücksichtigt werden.

Abbildung 6: Anpassung des Spülgasdurchflusses

Auf der x-Achse wird der Spülgasdurchfluss und auf der y-Achse der Messwert des Geräts für die Konzentration angegeben.

A) Konzentrationsmessung bei hohem Spülgasdurchfluss. Die Länge des Weges ist hier kürzer als die effektive Länge des optischen Weges, da die Spülgasleitungen vollständig mit Spülgas gefüllt sind und das Spülgas in den Messpfad fließt.

B)Messwert für die Konzentration bei optimiertem Spülgasfluss. Die Länge des Weges ist hier gleich der Länge des effektiven optischen Weges, da die Spülgasleitungen komplett mit Spülgas gefüllt sind.

C Konzentrationsmessung ohne Spülgasdurchfluss. Die Länge des Weges ist hier die gleiche wie die Länge des optischen Weges, da der Sensor vollständig mit Prozessgas gefüllt ist.

(D) Einstellung des optimierten Spülgasflusses.

6 Technische Daten

6.1 Schnittstellen

Schnittstellen des ILA1-X000-EX		
Analoge Ausgänge	2 x 4-20 mA, aktiv (für Konzentration und Übertragung)	
Analoge Eingänge	2 x 4-20 mA (für Druck und Temperatur), aktiv oder passiv	
Relaisausgang	Fehlerstatus 60 V AC/60 V DC, max. 500 mA, NO (normally open)	
Relaiseingang	Wartungsstatus min. 6 V DC, max. 60 V DC, NO (normally open)	
Digitale Schnittstellen	CAN (Verbindung zum HMI), RS485, Modbus TCP/IP	
Kundenschnittstelle	Ethernet (RJ-45) und RS485 WebServer-basierte Software zur Echtzeit-Protokollierung der Gaskonzentration und der optischen Transmission	

Wechsel von aktiven und passiven Analogausgängen

Vorsicht Die Funktion des In-situ-Laser-Analysators wird beeinträchtigt, wenn diese analogen Ausgangstypen vertauscht werden. Überprüfen Sie die unterschiedlichen Energieanforderungen für aktive und passive Analogausgänge: Einzelheiten siehe Kapitel 10.3.1 und 10.3.2.

6.2 Abmessungen und Gewichte (Beispielsonden)

Angaben zur Eintauchlänge der Sonde siehe Abmessung "PL" in Tabelle 4: Typische Mindestdurchmesser für die Sonde.

In-situ-Laser-Analysator ILA1-X000-EX	20 cm optische Weglänge	40 cm optische Weglänge	80 cm optische Weglänge
Laserkopf und Sonde (Sondenflansch und Messsektion): Abmessungen (B x H x L)	185 x 238,6 x 460 mm	185 x 238,6 x 560 mm	185 x 238,6 x 760 mm
Laserkopf und Sonde (Sondenflansch und Messsektion): Gewicht	Ca. 14,9 kg	Ca. 10,6 kg	Ca. 16 kg
Laserkopf	Werkstoff: Aluminum, Gew s. Abmessung "A" in Tabelle	icht: 5,4 kg, Abmessungen (I e 3: Typische Längen Abmes	3 x H): 185 x 139 mm, Länge: ssung A (TDL-Kopf)
Sondenflansch: Werkstoff	Rostfreier Stahl 316		
Sondenflansch: Abmessungen	ANSI-Flansche: 2" Klasse 15 DN 80 PN 40, DN 65 PN 6	0, 2,5" oder 3" Klasse 150 od	er höher,

6.3 Werkstoffauswahl

Die für den ILA1-X000-EX verwendeten Werkstoffe hängen von der jeweiligen Anwendung ab. Sie können zwischen verschiedenen Thermopaketen und unterschiedlichen Materialien für den Prozessflansch, die Sondenverlängerung (optional) und das Messrohr wählen.

Ein Thermopaket besteht aus einer Isoliereinheit und einem Satz Dichtungen. Die Isoliereinheit wird verwendet, um den Laserkopf bei hohen Temperaturen vom Prozessflansch zu isolieren. Die folgende Tabelle zeigt die maximalen Temperaturen für die verschiedenen Thermopakete.

Code	Werkstoff: Isoliereinheit	Werkstoff: Dichtung	Max. Prozessgas-
			temperatur
Ν	-	Gylon [®] Style 3522	65 ℃
D	Durobest DB250R	Gylon [®] Style 3522	250 ℃
Z	ZrO ₂	ThermA-Pur [®] Style 4122	900 °C*

*Temperatur aufgrund von Wärmeleitung zum Laserkopf

GYLON® ist ein eingetragenes Warenzeichen für ein Hochleistungs-PTFE-Material von Garlock Sealing Technologies LLC, USA. THERMa-PUR® Style 4122 ist ein eingetragenes Warenzeichen von Garlock Sealing Technologies LLC, USA, für nichtmetallische Dichtungen beim Einsatz extremer Temperaturen.

Das Material des Prozessflansches, der Sondenverlängerung (optional) und des Messrohrs hängt von der maximalen Temperatur der Anwendung und der erforderlichen Korrosionsbeständigkeit ab. Sie können aus den folgenden Werkstoffen wählen:

Code	Werkstoff: Prozessflansche,	Max. Prozessgas-	Korrosionsbeständigkeit
	Sondenverlängerung (optional) und Messrohr	temperatur	
-S	Rostfreier Stahl 1.4571 (Standard)	500 ℃	Korrosionsbeständig
-R		250 ℃	Erhöhte
	Rostfreier Stahl 1.4462		Korrosionsbeständigkeit
-V		400 °C	Erhöhte
	Rostfreier Stahl 1.4539		Korrosionsbeständigkeit
-T	Rostfreier Stahl 1.4878	600 °C	Reduzierte
	(erhöhter Temperaturbereich)		Korrosionsbeständigkeit
-H	Nickel-basierte Legierung, z.B. Hastelloy®	900 °C	Hohe
	(hohe Temperatur)		Korrosionsbeständigkeit

Hastelloy[®] ist ein eingetragenes Warenzeichen für eine Nickel-Chrom-Molybdänit-Legierung von Haynes International, USA.

Für Informationen zu den Codes siehe Kapitel 7.2 Typenbezeichnung.

6.4 Technische Daten des Gesamtsystems

Technische Daten des ILA1-A000-EX		
Gemessenes Gas	O ₂	
Messbereich	0 bis 100 %	
Nachweisgrenze* (Abhängig	ILA1-A000-EX-PXX20: 500 ppm	
von der optischen	ILA1-A000-EX-PXX40: 250 ppm	
Weglänge)	ILA1-A000-EX-PXX60: 170 ppm	
	ILA1-A000-EX-PXX80: 125 ppm	
Max. Prozessgastemperatur	Abhängig vom gewählten Thermopaket und Prozessflansch, Sondenverlängerung (optional) und Werkstoff des Messabschnitts, siehe Kapitel 6.3. Die maximale Prozessgastemperatur wird durch das Bauteil mit der niedrigsten Temperaturzulassung bestimmt.	
Max. Prozessgasdruck	7 bar abs.	
Optische Weglänge (optische Weglänge =2 x Messsektionslänge)	Messsektionen mit 200, 400, 600 und 800 mm optischer Weglänge verfügbar	
Reproduzierbarkeits- abweichung	ILA1-A000-EX-PXX20: ± 1 % des gemessenen Werts oder ± 500 ppm O ₂ , je nachdem, welcher Wert höher ist ILA1-A000-EX-PXX40: ± 1 % des gemessenen Werts oder ± 250 ppm O ₂ , je	
	nachdem, welcher Wert höher ist ILA1-A000-EX-PXX60: ±1 % des gemessenen Werts oder ±170 ppm O ₂ , je nachdem, welcher Wert höher ist ILA1-A000-EX-PXX80: ±1 % des gemessenen Werts oder ±125 ppm O ₂ , je nachdem welcher Wert höher ist	
l inearitätsfehler	< 1 %	
Drift	< 2 % des Messbereichs alle 12 Monate	
Wiederholrate der Messung	1 s	
Spülen der Fenster	Stickstoff	
Empfohlener Spülgasdurchfluss	0 - 10 Nl/min (anwendungsabhängig)	
Spülgasdurchfluss für Gehäuse	Nur leichter Überdruck von 20 mbar erforderlich; Durchfluss ca. 5 ml/min	
Mediumberührende Teile	Abhängig vom gewählten Prozessflansch, Sondenverlängerung (optional) und Messsektionsmaterial	
Prozessfenster	UVFS (UV-Quarzglas als Standard), leckgeprüft und zertifiziert gemäß EN1779:1999 Standard	
Retroreflektor	UVFS (UV-Quarzglas)	
Netzversorgung	24 V DC \pm 10 % 6 W, abgesichert mit max. 20 A (Kurzschlussstrom)	
Leistungsaufnahme	< 6 VA	
Prozessgasgeschwindigkeit	1 m/s, empfohlen: mehr als 5 m/s	
EMV-Immunität	Gemäß EN 61326-1	
Aufwärmzeit	Es dauert etwa 3 Minuten, bis das System voll funktionsfähig ist.	
Gehäuseschrauben	Metrische Bolzen aus rostfreiem Stahl Klasse A4-70	
Justageeinheit	Zur Ausrichtung von Messsektion und Laserkopf, Gewicht: 1 kg	

* Die Nachweisgrenze (LOD) wurde unter konstanten Umgebungsbedingungen im kompensierten Temperatur- und Druckbereich (±0,015 %/mbar) und mit einer Messzeit von 10 Sekunden und einem gleitenden Mittelwert von 10 Punkten gemessen. Zusätzlich ist die Nachweisgrenze abhängig vom Messgas und dem gewählten Messbereich.

Technische Daten für ILA1-B000-EX		
Gemessenes Gas	SO ₂	
Messbereich	ILA1-B000-EX-PXX20: 0 bis 2 %	
(Abhängig von der	ILA1-B000-EX-PXX40: 0 bis 1 %	
optischen Weglänge)	ILA1-B000-EX-PXX60: 0 bis 0,7 %	
	ILA1-B000-EX-PXX80: 0 bis 0,5 %	
Nachweisgrenze*	ILA1-B000-EX-PXX20: 100 ppm	
(Abhängig von der	ILA1-B000-EX-PXX40: 50 ppm	
optischen Weglänge)	ILA1-B000-EX-PXX60: 33 ppm	
	ILA1-B000-EX-PXX80: 25 ppm	
Max. Prozessgasdruck	7 bar abs.	
Max. Prozessgastemperatur	Abhängig vom gewählten Thermopaket und Prozessflansch, Sondenverlängerung (optional) und des Werkstoffs des Messabschnitts, siehe Kapitel 6.3. Die maximale Prozessgastemperatur wird durch die Komponente mit der niedrigsten Temperaturzulassung bestimmt.	
Optische Weglänge (optische Weglänge =2 x Messsektionslänge)	Messsektionen mit 200, 400, 600 und 800 mm optischer Weglänge verfügbar	
Reproduzierbarkeits-	ILA1-B000-EX-PXX20: \pm 1 % des gemessenen Werts oder \pm 100 ppm SO ₂ , je	
abweichung	nachdem welcher Wert höher ist	
	ILA1-B000-EX-PXX40: ± 1 % des gemessenen Werts oder ± 50 ppm SO ₂ , je	
	nachdem weicher Wert noher ist	
	nachdem welcher Wert höher ist	
	ILA1-B000-EX-PXX80: ± 1 % des gemessenen Werts oder ± 25 ppm SO ₂ , je	
	nachdem welcher Wert höher ist	
Linearitätsfehler	< 1 %	
Drift	< 2 % des Messbereichs alle 12 Monate	
Wiederholrate der Messung	1 s	
Spülung der Fenster	Stickstoff oder Instrumentenluft	
Empfohlener	0 - 10 NI/min (anwendungsabhängig)	
Spülgasdurchfluss		
Spülgasdurchfluss für Gehäuse	Nur leichter Überdruck von 20 mbar erforderlich; Durchfluss ca. 5 ml/min	
Mediumberührende Teile	Abhängig vom gewählten Prozessflansch, Sondenverlängerung (optional) und Messsektionsmaterial	
Prozessfenster	Saphir, leckgeprüft und zertifiziert gemäß Norm EN1779:1999	
Retroreflektor	Kristalliner Werkstoff ähnlich wie Saphir	
Netzversorgung	24 V DC ±10 % 6 W, abgesichert mit max. 20 A (Kurzschlussstrom)	
Leistungsaufnahme	< 6 VA	
Prozessgasgeschwindigkeit	1 m/s, empfohlen: mehr 5 m/s	
EMV-Immunität	Gemäß EN 61326-1	
Aufwärmzeit	Es dauert ca. 3 Minuten, bis das System voll betriebsfähig ist	
Gehäuseschrauben	Schrauben aus rostfreiem Stahl, Klasse A4-70, metrisch	
Justageeinheit	Zur Ausrichtung von Messsektion und Laserkopf, Gewicht: 1 kg	

* Die Nachweisgrenze (LOD) wurde unter konstanten Umgebungsbedingungen im kompensierten Temperatur- und Druckbereich (±0,015 %/mbar) und mit einer Messzeit von10 Sekunden und einem gleitenden Mittelwert von 10 Punkten gemessen. Zusätzlich ist die Nachweisgrenze abhängig vom Messgas und dem gewählten Messbereich.

Lasersicherheit 6.5

Laserinformation für ILA1-X000-EX		
Laserklasse für Laserkopf mit montierter Sonde	Klasse 1 gemäß IEC 60825-1, augensicher	
Warnung	Gefahr durch Laserstrahlung! Laserklasse des Laserkopfes ohne Sonde: O₂-Laser: Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen SO₂-Laser: Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten. Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus.	

6.6 **Ex-Sicherheit**

ATEX-Zertifikat für ILA1-	X000-EX
ATEX-Richtlinie 2014/34/EU	T _{Umgebung} -40 °C bis +59 °C EX II (1)2 G Ex db eb [op is Ga] IIC T6 Gb EX II (1)2 D Ex tb [op is Da] IIIC T85 °C Db T _{Umgebung} -40 °C bis +65 °C EX II (1)2 G Ex db eb [op is Ga] IIC T5 Gb EX II (1)2 D Ex tb [op is Da] IIIC T92 °C Db
Kabelverschraubungen am Ex-e-Anschlusskasten	 2 x M16 Marke: Pflitsch, Typ: bg216msHTex, Klemmbereich: 7-11 mm, Drehmoment: 8 N m 1 x M20 Marke: Pflitsch, Typ: bg220msHTex, Klemmbereich: 9-14 mm, Drehmoment: 10 N m
EU-Richtlinien	IEC 60079-0:2017 Ed. 7 IEC 60079-1:2014 Ed. 7 IEC 60079-7:2015/A1:2017 Ed. 5.1 IEC 60079-14:2014 Ed. 6 IEC 60079-28:2015 Ed. 2 IEC 60079-31:Ed. 3 EN 60079-0:2018/AC:2020 EN 60079-1:2014/AC:2018 EN 60079-7:2015/AC:2017 EN 60079-14:2014/AC:2016 EN 60079-28:2015 EN 60079-31:2014

Umgebungsbedingungen 6.7

Umgebungsbedingungen für ILA1-X000-EX				
Umgebungsdruck	700 bis 1200 hPa			

Umgebungsbedingungen für ILA1-X000-EX				
Umgebungsfeuchtigkeit	RH < 99 %, nicht kondensierend			
Umgebungstemperatur	-40 bis +59 °C für T6 -40 bis +65 °C für T5			
Lagertemperatur	-40 bis +70 °C			
Schutzklasse	Gemäß IP65			

6.8 Optionen

Optionen für ILA1-X000-EX					
ILA HMI DCU10 EX	 Anzeige- und Bedieneinheit (HMI) zur Bedienung, Konfiguration oder Diagnose des In-situ-Laser-Analysators ILA1-A000-EX. LCD-Display: 128 x 64 Pixel Analoge Ausgänge: 4 x 4-20 mA, programmierbar, aktiv Analoge Eingänge: 2 x 4-20 mA, programmierbar, aktiv/passiv Relaisausgänge: 2 x programmierbare Relaisausgänge: 60 V AC/60 V DC, max. 120 mA, NO (normally open) Relaiseingänge: 2 x programmierbare Relaiseingänge: min. 16 V DC, max. 60 V DC, NO (normally open) Digitale Schnittstellen: CAN (Verbindung zum Laserkopf) 				
SU EL10	Versorgungseinheit mit 24 V DC einschließlich: 2 x Kabelverschraubungen (5-14 mm) für den Anschluss Laserkopf – HMI, 5 x Kabelverschraubungen (4-11 mm) für Netz, analoge Signale und Statussignale; Schnittstellen: RJ45 für Modbus TCP/IP; Bedienelemente: Netz- und Wartungsschalter; Schutzart: IP65				
SU EP10	Versorgungseinheit inkl. 24 V DC-Netzteil mit 50 W für Versorgungsspannung 100-240 V AC einschließlich: 2 x Kabelverschraubungen (5-14 mm) für den Anschluss Laserkopf – HMI, 5 x Kabelverschraubungen (4-11 mm) für Netz, analoge Signale und Statussignale; Schnittstellen: RJ45 für Modbus TCP/IP; Bedienelemente: Netz- und Wartungsschalter; Schutzart: IP65				
SU EP10 EX	EX-Versorgungseinheit inkl. 24 V DC-Netzteil mit 50 W für Versorgungsspannung 100-240 V AC einschließlich: 2 x Kabelverschraubungen (5-14 mm) für den Anschluss Laserkopf – HMI, 5 x Kabelverschraubungen (4-11 mm) für Netz, analoge Signale und Statussignale; Schnittstellen: RJ45 für Modbus TCP/IP; Bedienelemente: Netz- und Wartungsschalter; Schutzart: IP65				
SU G10	Versorgungseinheit für Spülgas einschließlich: 1 x Spülgas EIN (Druck: 3-8 bar) für Stickstoff (N2), 1 x Gasweg mit Durchflussmesser zur Spülung der Messstrecke (Durchfluss: 0-13 NI/min), 1 x Gasweg mit Druckregler (0-0,7 bar) für Überdruckkapselung des Laserkopfes (0,1 bar über Umgebungsdruck), 1 x Gasweg mit Druckregler (0-6,8 bar) für Überdruckkapselung der Pufferzone (1 bar über Prozessdruck); Schutzart: IP65				
SU G10 EX	EX-Versorgungseinheit für Spülgas einschließlich: 1 x Spülgas EIN (Druck: 3-8 bar) für Stickstoff (N2), 1 x Gasweg mit Durchflussmesser zur Spülung der Messstrecke (Durchfluss: 0-13 NI/min), 1 x Gasweg mit Druckregler (0-0,7 bar) für Überdruckkapselung des Laserkopfes (0,1 bar über Umgebungsdruck), 1 x				

Optionen für ILA1-X000-E	Optionen für ILA1-X000-EX					
	Gasweg mit Druckregler (0-6,8 bar) für Überdruckkapselung der Pufferzone (1 bar über Prozessdruck); Schutzart: IP65					
ILA-Kabel, 10 m, 10 x 2 x 0,25 mm	Vorkonfektioniertes Kabel, 10 x 2 x 0,25 mm, Länge: 10 m, zum Anschluss Laserkopf – elektrische Versorgungseinheit					
ILA-HMI-Kabel, 10 m, 12 x 2 x 0,25 mm	Vorkonfektioniertes Kabel, 12 x 2 x 0,25 mm, Länge: 10 m, zum Anschluss HMI – elektrische Versorgungseinheit					
EX ILA-Netzteil	ILA-Netzteil TR TSPC050-124 24VDC EX					
ILA Mobilfunk VPN-Router RO1520-4L	Der Mobilfunk-Router ermöglicht den Remote-Zugriff auf den Laser-Analysator ILA. Eine SIM-Karte zum Betrieb des Routers ist kundenseitig bereitzustellen.					
PS KE10-80R EX	Ex-piezoresistiver Drucktransmitter, 0-10 bar abs., Druckanschluss: G 1/2", kompletter Temperaturbereich: -10 bis +80 °C					
PS KE10-80R	Piezoresistiver Drucktransmitter, 0-10 bar abs., Druckanschluss: G 1/2", kompletter Temperaturbereich: -10 bis +80 °C					
TS JU600-400A EX	Ex-Einschraub-Widerstandsthermometer mit durchgehendem Schutzrohr, -40 bis +600 °C, Anschlussverschraubung: G 1/2"					
TS JU600-400A	Einschraub-Widerstandsthermometer mit durchgehendem Schutzrohr, -40 bis +600 °C, Anschlussverschraubung: G 1/2"					
Sondenverlängerung	Verschiedene Längen bis 500 mm verfügbar					
In-situ-Filter	Filter, um die Messsektion gegen hohe Staubkonzentrationen zu schützen					

Technische Zeichnungen 6.9

Abbildung 7: ILA1-B000-EX-PXX20

Abbildung 8: ILA1-B000-EX-PXX20 mit Justier- und Isoliereinheit, Filter und Verlängerung

Abbildung 9: ILA1-A000-EX-PXX80 mit Justier- und Isoliereinheit, Filter und Verlängerung

Alle Abmessungen in mm

7 Warenempfang

Bitte nehmen Sie den In-situ-Laser-Analysator vorsichtig aus der Verpackung. Überprüfen Sie den auf dem Lieferschein angegebenen Lieferumfang. Vergewissern Sie sich, dass Sie alle auf dem Lieferschein angegebenen Teile erhalten haben.

Überprüfen Sie das Gerät nach Erhalt auf eventuelle Transportschäden und melden Sie eventuelle Beanstandungen sofort dem Transportunternehmen.

Vorsicht Kondensation beeinträchtigt die Laser-Funktion!

Kondenswasser auf den Oberflächen des In-situ-Laser-Analysators kann die Inbetriebnahme des Geräts beeinträchtigen. Lassen Sie das Analysegerät einige Stunden lang unter denselben Umgebungsbedingungen stehen, in denen es installiert werden soll.

7.1 Lieferumfang

Der Lieferumfang umfasst Folgendes:

- Laserkopf mit Sonde in optischer Weglänge von 20/40/60/80 cm (vollständig montiert gemäß Auftrag):
 - o Sondenverlängerung (optional)
 - o Justageeinheit zur Anpassung der Ausrichtung (fall dies Teil der Anwendung und des Auftrags ist)

- o Isoliereinheit (optional)
- o Graphitdichtung (1 x) für Montageflansch
- Externes HMI (optional)
- Druck- und Temperatursensoren (optional)
- Unbeheizte Kalibrierkappe (optional)
- Betriebsanleitung

7.2 Typenbezeichnung

Aufgrund der unterschiedlichen Anforderungen an den Prozess gibt es verschiedene Versionen des In-situ-Laser-Analysators (ILA). Die jeweiligen Versionen können der folgenden Tabelle entnommen werden.

ILA1	-X	000	-XX	-P	XX	XX	-XXX	-X	Χ	Typenbezeichnung	
										Gemessenes Gas	
	-A									O ₂	
	-B									SO ₂	
										Zulassungen	
			-EX							EX-Zulassung	
										Sondenverlängerung	
					00					Keine Verlängerung	
					20					20 cm	
					45					45 cm	
										Weglänge	
						20				20 cm	
						40				40 cm	
						60				60 cm	
						80				80 cm	
										Flanschversion	
							-A01			2" Klasse 150	
							-A02			2,5" Klasse 150	
							-A03			2,5" Klasse 300	
							-A04			3" Klasse 150	
							-A05			3,5" Klasse 150	
							-D01			DN 65 PN 6	
							-D02			DN 80 PN 40	
										Werkstoff	
								-S		1.4571 (S tandard)	
								-R		1.4462 (korrosionsbeständig)	
								-V		1.4539 (sehr korrosionsbeständig)	
								-T		1.4878 (erhöhter T emperaturbereich)	
								-H		Nickel-basierte Legierung, z.B. Hastelloy® (h ohe	
										Temperatur)	
										Temperaturpaket	
									Ν	Gylon-Dichtungen, kei n e Isoliereinheit	
									D	Gylon-Dichtungen, D urobest-Isoliereinheit	
									Ζ	ThermA-Pur-Dichtungen, \mathbf{Z} rO ₂ -Isoliereinheit	

Tabelle 1: Typenbezeichnung

7.3 Typenschild, Seriennummer und Laserkennzeichnung

Auf dem TDL-Laserkopf befindet sich ein Typenschild, das zur Geräteidentifikation dient. Eine Übersicht zu diesem Typenschild ist unten dargestellt.

Abbildung 10: Produktkennzeichen für ATEX-Version

Die Seriennummer des Lasers hat die folgende Struktur:

Abbildung 11: Struktur der Seriennummer des In-situ-Laser-Analysators

Die folgende Laserkennzeichnung befindet sich auf dem In-situ-Laser-Analysator:

Abbildung 12: Laserkennzeichnung

Gefahr durch Laserstrahlung! Laserklasse des Laserkopfes ohne Sonde: **O₂-Laser:** Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen **SO₂-Laser:** Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten. Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus..

7.4 Kalibrierung des In-situ-Laser-Analysators

Der In-situ-Laser-Analysator wird im Werk mit zertifizierten Gasgemischen kalibriert. Eine Referenz-Gaszelle im Inneren des In-situ-Laser-Analysators sorgt dafür, dass der Kalibrierstatus des Analysators funktionstüchtig bleibt. Wir empfehlen jedoch eine einmal jährliche Kalibrierung durch M&C oder ein zertifiziertes Serviceunternehmen.

7.5 Unbeheizte Kalibrierkappe

Eine Kalibrierkappe dient dazu, dass In-situ-Laser-Messgerät in regelmäßigen Abständen zu überprüfen und zu justieren. Es gibt verschiedene Ausführungen von Kalibrierkappen, beheizte und unbeheizte. Die beheizten Kalibrierkappen werden nur verwendet, wenn bei niedrigeren Temperaturen die Gefahr der Kondensation besteht, in allen anderen Fällen wird eine unbeheizte Kalibrierkappe verwendet.

Abbildung 13: Aufbau der Kalibrierung mit unbeheizter Kalibrierkappe

Der Temperatursensor des Prozesses (Zonentrennung mit Hülse) wird auch in diese Kalibrierkappe eingeschraubt, um Kompensationsfehler durch Temperaturabweichungen während der Messung zu minimieren.

Da die Justierung unter atmosphärischem Druck erfolgt, wird der atmosphärische Druck während der Ausrichtung ebenfalls kompensiert.

7.5.1 Drucksensor

Die Einflüsse von Temperatur, Druck, Staubbelastung und anderen Gasen werden normalerweise durch das HMI kompensiert. Typische Einschränkungen am Drucksensor sind jedoch:

Einfluss des Messgasdrucks: ±0,4 % des Bereichs

z.B. max. Prozessgasdruck: 5 bar (a), aber Druck unter normalen Bedingungen 1 bar (a)

- 10 mbar sind gleich einer Abweichung von 0,25 % am TDL bei einem 1 bar (a)
- => Min. Qualität: ± 16 mbar bei 5 bar (a)
 - $\Rightarrow \pm 0,32$ % bei einem 5 bar (a) Sensor;

In der Regel wird die Toleranz als Prozentsatz des Skalenendwertes angegeben; falls die Druckabstufung z. B. 10 bar (a) beträgt, so halbiert sich die zulässige Toleranz des Drucksensors:

 \Rightarrow ±0,16 % bei einem 10 bar (a) Sensor

Die Abweichung bei der Konzentrationsmessung des Gases in Bezug auf die Ungenauigkeit des Drucksensors ist bei höheren Drücken (z.B. 6 bar (a)) geringer, aber die Messung wird durch die Ungenauigkeit aufgrund einer breiteren Spezifikation eingeschränkt.

• 10 mbar sind gleich einer Abweichung von 0,11 % am TDL.

7.5.2 Leistung eines typischen Drucksensors

Die folgende Tabelle zeigt die Leistung eines typischen Drucksensors, der für diese Art der Anwendung eingesetzt wird.

Leistung des Druckse	ensors				
Digitale Nicht-	≤ ±0,02 %				
Linearität	FS	Best fitted straight line (BFSL)			
		Nicht-Linearität (best fitted straight line BFSL), Druckhysterese,			
Genauigkeit @ RT (20	≤ ±0,05 %	Nicht-Wiederholbarkeit, Nullpunktabweichung und			
bis 25 °C)	FS	Verstärkungsabweichung			
		Max. Abweichung innerhalb des kompensierten Druck- und			
		Temperaturbereichs. Erfahrungsgemäß wird außerhalb des			
Gesamtfehlerbereich		kompensierten Temperaturbereichs das Gesamtfehlerband im			
(-10 bis 80 °C)	$\leq \pm 0,1$ % FS	Umgebungstemperaturbereich um 0,1 % FS erweitert.			
Kompensierte		Optionale andere kompensierte Temperaturbereiche innerhalb			
Temperaturbereiche	-10 bis 80 °C	40 bis 125 °C sind möglich			
Analogschnittstelle					
zusätzliche	$\leq \pm 0,05$ %				
Abweichung	FS	In Bezug auf die Genauigkeit @ RT und den Gesamtfehlerbereich			
		1 x pro Jahr unter Referenzbedingungen, jährliche Rekalibrierung			
Langzeit-Stabilität	$\leq \pm 0,1$ % FS	wird empfohlen			
Positions-		Kalibriert in vertikaler Montageposition mit nach unten			
abhängigkeit	≤ ±2 mbar	gerichtetem Druckanschluss			
Auflösung	0,0005 % FS	Digital			
Signalstabilität	0,0025 % FS	Digital geräuschlos			
Interne Messrate	≥ 1800 Hz	Für die Version «3-Leiter + digital (0 to 10 V, 0 bis 5 V)» > 6000 Hz			
		Außerhalb der Druckbereichsreserve wird +Inf / -Inf angezeigt.			
Druckbereichsreserve	±10 %	Falls es einen Fehler im Gerät gibt, wird NaN angezeigt.			
Vakuumfestigkeit	Für Betriebsdrücke ≤ 0,1 bar abs. wird vakuumoptimierte Version empfohlen				
	Für Druckbereiche < 1 bar beziehen sich alle Angaben auf ein Full-Range-Signal				
Hinweis	(FS) von 1 bar				

Tabelle 2 : Daten der Keller-35X-Serie

Typische Einschränkungen beim Temperatursensor sind:

		Neigung	Neigung		
T (°C)	Intensität	(U.A)	[%/°C]	Temperatur	25
15	2,42E-03	-4,00E-06	-0,17 %	Klasse A	0,2
20	2,40E-03		Präzision [°C]	Klasse B	0,425
25	2,38E-03		0,2	Klasse C	0,85
30	2,36E-03		Präzision [%]		
35	2,34E-03		-0,03%		

Einfluss der Messgastemperatur:

T (°C)	Intoncität	Neigung	Neigung	Tomporatur	200
1(0)	intensitat	(U.A)	[70/ C]	Temperatur	500
290	1,76E-03	-1,40E-06	-0,08 %	Klasse A	0,75
295	1,75E-03		Präzision [°C]	Klasse B	1,8
300	1,74E-03		1,8	Klasse C	3,6
305	1,74E-03		Präzision [%]		
310	1,73E-03		-0,14 %		

		Neigung	Neigung		
T (°C)	Intensität	(U.A)	[%/°C]	Temperatur	600
580	1,39E-03	-1,00E-06	-0,07 %	Klasse A	1,35
590	1,38E-03		Präzision [°C]	Klasse B	3,3
600	1,37E-03		3,3	Klasse C	6,6
610	1,36E-03		Präzision [%]		
620	1,35E-03		-0,24 %		

7.5.3 Leistung eines typischen Temperatursensors

Die folgende Tabelle zeigt die Leistung eines typischen Temperatursensors, der für diese Art Anwendung eingesetzt wird.

Datenblatt	902820
Desister	Einschraub-Widerstandsthermometer für die
	Prozessiechnik mit durchgenendem Schutzrohr
Betriebstemperatur in °C	-50 to +600 °C (Dunnschicht-Temperatursensor)
Messeinsatz	1x Pt100 in 4-Leiter-Schaltung
Toleranzklasse gemäß DIN EN 60751:2009 / IEC 60751:2008	В
Schutzrohr Durchmesser D in mm	9,00 mm
Länge des Einsatzes	400,00 mm
Prozessanschluss	G 1/2
Werkstoff des Schutzrohrs	Rostfreier Stahl 1.4571 (316Ti)
Extra-Codes Laserkopf	Anschlusskopf Ex d IIC und Ex tb IIIC aus Aluminium-Druckguss (nur in Verbindung mit Extra-Code 362)
Extra-Codes Transmitter	1 x Transmitter (Ex) programmierbar, Ausgang 4 bis 20 mA/20 bis 4 mA, Datenblatt 707010
Messbereich Transmitter	-40 bis +600 °C
Transmitter-Ausgang	4 bis 20 mA
Typenzusatz Explosionschutz Extra-Code 292	Explosionsschutz gemäß 2014/34/EU (ATEX) Trennelement gemäß IEC 60079
Ex-Zulassung	ATEX-Zulassung gemäß SEV 15 ATEX 0118
IECEx-Zulassung	EX-Zulassung gemäß IECEx SEV 15.0006
ATEX Druck/Gas	II 1/2 G Ex d IIC T6T1 Ga/Gb
Ex-Kennzeichnung für Druck/Gas	Ex d IIC T6T1 Ga/Gb
ATEX Druck/Staub	II_1/2_D_Ex_tb_IIIC_T80-400
IECEx-Kennzeichnung Druck/Staub	Ex tb IIIC T80400°C Da/Db

Die folgende Tabelle zeigt die typischen technischen Angaben eines Transmitters für einen Temperatursensor, der für diese Art Anwendung eingesetzt wird.

Datenblatt	707010
Messeingang	Messbereichsgrenzen
Pt100 DIN EN 60751	-200 bis +850 °C
Messbereich -100 bis +200 °C	Genauigkeit* des Transmitters: ±0,2 K
Messbereich -200 bis +850 °C	Genauigkeit* des Transmitters: ±0,4 K
Anschlussart	2-Leiter-, 3-Leiter- oder 4-Leiter-Anschluss
Mindestmessbereich	10 K

Datenblatt	707010
Sensorkabel Widerstand - mit 3-Leiter- und 4-Leiter-Anschluss - mit 2-Leiter-Anschluss	\leq 11 Ω pro Leitung Messwiderstand + \leq 22 Ω innerer Leitungswiderstand
Sensorstrom	< 0,6 mA
Messrate	> 1 Messung pro Sekunde

*Die Genauigkeit bezieht sich auf den max. Messbereich.

8 Installation

8.1 Sicherheitsinformationen

Der Infrarot-Laser im Inneren des In-situ-Laser-Analysators ist gemäß IEC 60825-1:2014 als Laser der Klasse 1 eingestuft. Ein Laser der Klasse 1 ist unter allen Bedingungen bei normaler Verwendung sicher.

Die folgende Laser-Kennzeichnung befindet sich auf dem In-situ-Laser-Analysator:

Gefahr durch Laserstrahlung!

Laserklasse des Laserkopfes ohne Sonde:

O₂-Laser: Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen

SO₂-Laser: Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten.

Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus.

Toxisches Gas ist vorhanden!

Führt wahrscheinlich zum Tod oder zu schweren Verletzungen, wenn es eingeatmet wird oder wenn man damit in Kontakt kommt.

Verwenden Sie ein Gaswarngerät, um giftige Gase zu erkennen. Tragen Sie geeignete persönliche Schutzausrüstung (PSA) gemäß der Risikobewertung.

Heiße Metallteile!

Wenn Sie mit heißen Metallteilen in Berührung kommen, kann dies zum Tod oder zu schweren Verbrennungen führen.

Tragen Sie eine geeignete persönliche Schutzausrüstung (PSA) gemäß der Risikobewertung. Wenn möglich, schirmen Sie das heiße Teil mit geeignetem Isoliermaterial ab.

Hoher Druck bei der Montage!

Wenn Sie den In-situ-Laser-Analysator an einen Flansch montieren, der zu einem Hochdruckprozess führt, kann dies wahrscheinlich zum Tod oder zu schweren Verletzungen führen.

Legen Sie einen Sicherheitsfaktor für die Montage des In-situ-Laser-Analysators fest. Das Fenster der Prozessschnittstelle ist bis zu 4 MPa (40 bar) berstgeprüft.

Der spezifizierte Bereich des Betriebsdrucks weicht hiervon ab und ist im Datenblatt beschrieben.

Warnung

Kontakt mit spannungsführenden Teilen!

Wenn Sie während der Installation oder Deinstallation des In-situ-Laser-Analysators mit spannungsführenden Teilen in Berührung kommen, kann dies zum Tod oder zu schweren Verletzungen führen. Stellen Sie sicher, dass die Stromversorgung während der Installation und Deinstallation abgeschaltet ist.

Das Gehäuse darf erst nach einer Wartezeit von 4 Sekunden nach Unterbrechung der Stromversorgung geöffnet werden.

8.2 Informationen zur ATEX-Installation

Qualifiziertes Personal

Der In-situ-Laser-Analysator kann nur durch qualifiziertes Personal installiert werden. Qualifiziertes Personal muss mindestens über die folgenden Kenntnisse verfügen:

- Unterweisungen im Explosionsschutz
- Ausbildung im elektrotechnischen Bereich
- Detaillierte Kenntnisse der Betriebsanleitung der geltenden Sicherheitsbestimmungen.

Installieren, warten oder reparieren Sie den Laser-Analysator nicht, wenn explosionsgefährdete Atmosphäre besteht.

Öffnen Sie den Anschlusskasten und das HMI nicht in explosionsgefährdeten Bereichen.

Öffnen Sie das Aluminiumgehäuse des Laserkopfes nicht in einem explosionsgefährdeten Bereich. Die Kondensatoren sind nach 4 Sekunden entladen, aber es gibt einen Akku zur Versorgung der RTC, die für mehrere Jahre geladen wird!

Ein leicht zugänglicher Hauptschalter mit entsprechender Beschriftung muss extern vorhanden sein.

Wenn die Standardkonfiguration durch die Verwendung von nicht spezifizierten und von M&C nicht genehmigten Komponenten oder Teilen geändert wird, ist die Baumusterprüfbescheinigung nicht mehr gültig. Reparaturen und Serviceleistungen mit Teilen, die nicht von M&C spezifiziert sind, führen ebenfalls zum Erlöschen der ATEX-Bescheinigung.

Ex Vorsicht Installation in einer Zone, die nicht in der ATEX-Bescheinigung angegeben ist:

Die ATEX-Bescheinigung ist nicht gültig, wenn der In-situ-Laser-Analysator in einer Zone installiert wird, die nicht in der ATEX-Bescheinigung aufgeführt ist.

Befolgen Sie genau die Angaben in der ATEX-Bescheinigung.

Elektrostatische Entladungen können in Gefahrenbereichen als Zündfunken wirken. Verwenden Sie das Gerät nicht in Bereichen, in denen:

- mechanische Reibungs- und Trennvorgänge auftreten,
- Elektronen versprüht werden (z.B. in der Nähe von elektrostatischen Lackieranlagen) oder
- pneumatisch geförderte Stäube vorhanden sind.

Abbildung 14: Montage eines In-situ-Laser-Analysators in Ex-Zonen

8.3 Zünddurchschlagssichere Spalte am Ex-d-Gehäuse, Luft- und Kriechstrecken am Ex-e-Klemmenkasten

Die zünddurchschlagssicheren Spalte der druckfesten Kapselung des Ex-d-Gehäuses dürfen nicht nachgearbeitet oder repariert werden.

Die Luft- und Kriechstrecken nach IEC 60079-7, Tabelle 1, müssen bei allen Anschlüssen an den Klemmen im Inneren des Ex-e-Klemmenkastens eingehalten werden.

Für die Nennspannung 24 V DC (< 32 V DC) ist beim Anschluss der einzelnen Drähte an die Reihenklemmen eine Mindestkriechstrecke von 1,8 mm einzuhalten.

Um die Zündschutzart aufrechtzuerhalten, muss der Anschluss der Drähte mit äußerster Sorgfalt durchgeführt werden. Die Isolierung der Drähte muss bis zur Klemme reichen. Der Draht selbst darf nicht beschädigt werden. Achten Sie auf den minimalen und maximalen anschließbaren Leitungsquerschnitt.

8.4 Umgebungstemperaturanforderungen zur Inbetriebnahme

Der ILA1-X000-EX darf nur in dem Umgebungstemperaturbereich betrieben werden, der in den technischen Daten spezifiziert ist. Besteht die Gefahr, dass die zulässigen Umgebungsbedingungen überschritten werden, z.B. durch direkte Sonneneinstrahlung, muss das Gerät von der Wärmequelle abgeschirmt werden. Wenden Sie sich an M&C oder einen M&C-Vertreter, wenn Sie weitere Informationen oder Unterstützung benötigen.

VorsichtErwärmung durch direkte Sonneneinstrahlung ist nicht zulässig!
Die in den technischen Daten angegebene Umgebungstemperatur
darf nicht überschritten werden.
Wenn Sie sich bezüglich der Handhabung und Inbetriebnahme des
Systems unsicher sind, wenden Sie sich an M&C oder einen M&C-
Vertreter, um weitere Informationen oder Unterstützung zu erhalten.Kondensation beeinträchtigt die Laserfunktion!
Kondensat auf den Oberflächen des In-situ-Laser-Analysators kann die
Funktion des Geräts beeinträchtigen. Lassen Sie das Analysegerät
einige Stunden lang unter denselben Umgebungsbedingungen
stehen, unter denen es installiert und in Betrieb genommen wird.

8.5 Auswahl der Messstelle

Zur Auswahl der Messstelle für den ILA1-X000-EX empfehlen wir einen geraden Abschnitt des Rohres, in den das Prozessgas strömt. Als Faustregel gilt, dass der gerade Abschnitt mindestens das Fünffache des Prozessrohrdurchmessers vor der Messstelle und mindestens das Dreifache des Prozessrohrdurchmessers nach der Messstelle betragen sollte. Die Wahl dieses geraden Abschnitts des Prozessrohrs führt zu nahezu gleichmäßigen Strömungsverhältnissen, die für stabile Messungen wichtig sind.

8.6 Installation des Prozessflansches durch den Kunden

Vorsicht

Die Begrenzung der maximalen Umgebungstemperatur ist auch für den Prozessflansch wichtig. Durch die Verwendung eines Isolierflansches wird die Wärmeübertragung vom Prozess zur Anschlussstelle des Laserkopfes

Für die Montage des Laser-Analysators ist nur ein Prozessflansch erforderlich. Der Prozessflansch muss vom Kunden installiert werden.

Der Prozessflansch muss kundenseitig an der entsprechenden Messstelle installiert werden. Die Abmessungen für den Standard-Prozessflansch sind wie folgt:

• DN 65/PN 6 mit einem Mindestinnendurchmesser von 60 mm

Der Prozessflansch sollte so wenig wie möglich überstehen, um die Messung möglichst zentral im Prozess durchzuführen. Idealerweise sollte der Prozessflansch weniger als 60 mm herausragen. Wenn der Prozessflansch darüber hinausragt, muss ein Verlängerungsstück in die Sonde eingesetzt werden. Siehe die folgende Abbildung für weitere Einzelheiten.

Um die Sonde entfernen zu können, muss die Abmessung "B" ein wenig länger sein als A+PL.

drastisch reduziert.

Abbildung 15: Schematische Zeichnung der Installation des Standard-Prozessflansches

lsoliereinheit von bis zu 280 °C	lsoliereinheit von bis zu 900 °C	Justageeinheit	Abmessung A, ca. [mm]
-	-	-	222
-	-	Х	268
Х	-	Х	345
-	Х	Х	370

Justageeinheit wird für lange Sonden benötigt (z.B. 400 mm); Isoliereinheit erforderlich für hohe Temperaturen

Tabelle 3: Typische Längen der Abmessung A (TDL-Kopf)

Sonden-	Filter	Sonden-	D	Øi [mm]	Standardrohr Ø a x t als	Sondenlänge PL
typ [cm]		verlängerung	[mm]	or Li [mm]	Referenz [mm x mm]	[ca. mm]
40	-	-	40	496	521 x 12,5	538
40	х	-	40	517,6	546 x 14,2	544
40	х	х	200	534	559 x 12,5	724
10	-	-	30	201,8	216 x 7,1	238
10	х	-	30	214,8	229 x 7,1	244
10	x	X	190	231.3	245 x 7.1	424

Ein Filter wird für staubhaltige Prozessgase benötigt. Eine Sondenverlängerung wird verwendet, um bei großen Rohrdurchmessern zentrierter messen zu können.

Tabelle 4: Typische Mindestdurchmesser für die Sonde

8.7 Informationen zur optischen Weglänge

Die optische Weglänge wird durch die Länge des Langlochs im Inneren der Sonde bestimmt. Das zu messende Gas strömt durch diese Öffnung und kreuzt den Weg des Laserstrahls. Die Länge des Langlochs ist werkseitig eingestellt. Die optische Weglänge beträgt das Zweifache der Länge des Langlochs, da der Laserstrahl das Langloch zweimal passiert.

Abbildung 16: Schematische Zeichnung der optischen Weglänge

8.8 Montage des In-situ-Laser-Analysator

Der In-situ-Laser-Analysator ist in der Regel vormontiert. Während der Installation kann es erforderlich sein, eine Sicherheitsklemme zu öffnen, um eine Justage- oder Isoliereinheit anzubringen. Um die Lasertransmission zu maximieren, kann es auch notwendig sein, eine der Klemmen zu öffnen.

Stellen Sie sicher, dass die Flansche und Dichtungen vor dem Einbau sauber sind. Falls erforderlich, reinigen Sie die Oberflächen mit einem trockenen Tuch.

Verwenden Sie Dichtungen mit Zentrierringen an den Dichtungsflächen der Justage- und Isoliereinheit.

Verwenden Sie nur eine Dichtung an der Dichtungsfläche des Montageflansches des Laserkopfes. Es wird kein Zentrierring benötigt, da der Laserkopf bereits mit einem Zentrierring ausgestattet ist.

Die zur Befestigung der Flansche verwendeten Klemmen sind Sicherheitsklemmen. Die Klemmen fallen nicht herunter, wenn sie leicht geöffnet werden.

- ① Staubfilter (optional)
- ③ Isoliereinheit (optional)
- (5) Laserkopf einschl. Anschlusskasten
- ② Verlängerung (optional)
- Justageeinheit
- 6 HMI (optional)

Abbildung 17: Explosionsansicht des gesamten Laser-Analysators

Embracing Challenge

① Dichtung und Zentrierring für Isoliereinheit; für Temperaturen über 280 °C, diese Dichtung ist aus Graphit oder Glimmer

- ③ Dichtung und Zentrierring für Justageeinheit
- ⑤ Montage Flanschdichtung (kein Zentrierring)
- ② Laserkopf einschl. Anschlusskasten

Abbildung 18: Explosionsansicht außerhalb des Prozesses

Befolgen Sie diese Schritte zur Montage der Einheit:

1. Falls nicht vormontiert, beginnen Sie mit dem Aufbau des Vorderteils außerhalb des Prozesses. Beachten Sie die detaillierte Zeichnung in Abbildung 18. Ziehen Sie die Klammern mit einem Drehmoment von fest.

Halten Sie den Laserkopf horizontal beim Festziehen der Klemme.

In einem späteren Schritt kann diese Klemme leicht geöffnet werden, um den Laserkopf zu drehen. Das Drehen des Laserkopfes ist notwendig, um den Laser auszurichten und eine maximale Transmission zu erreichen.

- 2. Befestigen Sie die Prozessflanschdichtung am Prozessflansch des In-situ-Laser-Analysators.
- 3. Montieren Sie den Flansch des In-situ-Laser-Analysators mit den mitgelieferten Schrauben und Muttern an den Prozessflansch.
- 4. Das System ist nun vorbereitet für den Anschluss der Spülrohre.

@ Isoliereinheit; für Temp. über 280 °C wird die HT-Version genutzt (metallisiertes ZrO₂)

④ Justageeinheit wird für lange Sonden verwendet

© Sicherheitsklemmen aus rostfreiem Stahl

9 Anschluss der Spülrohre

Æx>	Die ATEX-Version des Laserkopfes ist mit einer Be- und Entlüftungsvorrichtung ausgestattet, um die ATEX-Anforderungen zu erfüllen.
Vorsicht	Verwenden Sie Stickstoff oder Instrumentenluft für SO ₂ -Messungen. Verwenden Sie für O ₂ -Messungen nur Stickstoff.
	Verwenden Sie nur hochwertiges Spülgas. Verunreinigungen können den In-situ-Laser-Analysator beschädigen.
Hinweis	Wenn Sie zum Spülen des ILA1-B000-EX Druckluft verwenden, achten Sie darauf, dass Sie nur trockene, staub- und ölfreie Druckluft verwenden.

Der In-situ-Laser-Analysator verfügt über drei verschiedene Arten der Spülung: Laserkopf, Pufferzone und Fensterspülung.

9.1 Spülen des Laserkopfes

Die Anschlüsse für die Laserkopfspülung befinden sich direkt am Laserkopfgehäuse. Diese Art der Spülung dient dazu, den Laserkopf von jeglichem Gas zu reinigen, das die Messung beeinträchtigen könnte.

Für den Anschluss der Spülein- und -ausgänge sind Schläuche mit einem Außendurchmesser von 6 mm zu verwenden. Verbinden Sie die Schläuche mit einer Stützhülse, um ein Zusammendrücken zu verhindern. Spülgasdurchfluss für den Laserkopf: nur geringer Überdruck von 100 mbar erforderlich; Durchfluss ca. 5 ml/min

Sie benötigen die folgenden Werkzeuge:

- Einen 3-mm-Sechskantschraubendreher zum Schließen der Verriegelungsschraube mit einem Drehmoment von 1,4 N m.
- Einen Drehmomentschlüssel der Größe 8 mm zum Schließen der Entlüftungsschraube mit einem Drehmoment von 7 N m.

Zur Reinigung des Laserkopfes gehen Sie wie folgt vor:

- 1. Stellen Sie den Druck des Laserkopfes ein, während die Entlüftungsschraube des Laserkopfes noch geschlossen ist. Es ist nur ein geringer Überdruck von 100 mbar erforderlich.
- 2. Verwenden Sie den 3-mm-Sechskant-Schraubendreher, um die Verriegelungsschraube herauszudrehen. Entfernen Sie die Sicherungsschraube und das Sicherungsblech, das die Entlüftungsschraube des Laserkopfes hält. Legen Sie die Sicherungsschraube und das Sicherungsblech beiseite.
- 3. Öffnen Sie die Laserkopf-Entlüftungsschraube leicht, so dass Sie hören können, wie Gas durch die Entlüftungsschraube strömt.
- 4. **Für den O₂-Sensor:** Laserkopf mit N₂ (Stickstoff) spülen. Die Sauerstoffkonzentration im Laserkopf beginnt zu sinken. Warten Sie mindestens 10 Minuten, bis die Sauerstoffkonzentration nicht mehr abnimmt.

Für den SO₂-Sensor: Spülen Sie den Laserkopf mit N₂ oder Instrumentenluft. Spülen Sie den Laserkopf für mindestens 10 Minuten.

- 5. Schließen Sie die Entlüftungsschraube des Laserkopfes mit einem Drehmoment von 7 Nm.
- 6. Nehmen Sie das Sicherungsblech und schieben Sie es über die Laserkopf-Entlüftungsschraube. Achten Sie darauf, dass das Loch für die Sicherungsschraube über dem Gewindeloch für die Sicherungsschraube liegt.
- 7. Setzen Sie die Sicherungsschraube ein und verwenden Sie den 3-mm-Sechskantschraubendreher, um die Sicherungsschraube mit einem Drehmoment von 1,4 Nm festzuziehen.
- 8. Prüfen Sie, ob der Druck im Laserkopf dem gewünschten Wert entspricht.

Während der Messung muss der Laserkopf nicht gespült werden. Jedes Mal, wenn Sie die Messung unterbrechen und der Laser-Analysator ausgeschaltet wird, müssen Sie den Laserkopf erneut spülen.

9.2 Spülen der Pufferzone zwischen Laserkopf und Prozessflansch

Die Pufferzone zwischen dem Laserkopf und dem Prozessflansch muss ebenfalls gespült werden, um störende Gase zu entfernen. Falls Sie eine Wärmeisoliereinheit (optional) und/oder eine Justageeinheit verwenden, werden auch diese Einheiten mit dieser Spüloption gereinigt. Der Spülgaseinlass (DN 6 (Swagelok™), Edelstahlrohr) befindet sich an der Seite des Flanschteils. Der Spülgasausgang ist mit einer Entlüftungsschraube verschlossen (siehe Abbildung 19).

Für den Anschluss der Spülein- und -ausgänge sind Schläuche mit einem Außendurchmesser von 6 mm zu verwenden. Verbinden Sie die Schläuche mit einer Stützhülse, um ein Zusammendrücken zu verhindern.

Der empfohlene Überdruck beträgt 1 bar über Prozessdruck.

Sie benötigen die folgenden Werkzeuge:

• Einen Drehmomentschlüssel der Größe 8 mm zum Schließen der Entlüftungsschraube mit einem Drehmoment von 7 Nm

Gehen Sie folgendermaßen vor, um die Pufferzone zu entlüften:

- 1. Stellen Sie den Druck der Pufferzone ein, während die Pufferzonen-Entlüftungsschraube noch verschlossen ist. Der empfohlene Überdruck liegt 1 bar über dem Prozessdruck.
- 2. Öffnen Sie die Pufferzonen-Entlüftungsschraube leicht, sodass Sie hören können, wie Gas durch die Entlüftungsschraube strömt.
- 3. **Für den O₂-Sensor:** Pufferzone mit N₂ (Stickstoff) spülen. Die Sauerstoffkonzentration im Pufferbereich beginnt zu sinken. Warten Sie mindestens 10 Minuten, bis die Sauerstoffkonzentration nicht mehr abnimmt.

Für den SO₂-Sensor: Spülen Sie die Pufferzone mit N_2 (Stickstoff) oder Instrumentenluft. Spülen Sie die Pufferzone für mindestens 10 Minuten.

- 4. Schließen Sie die Pufferzonen-Entlüftungsschraube mit einem Drehmoment von 7 N m.
- 5. Prüfen Sie, ob der Druck in der Pufferzone dem erforderlichen Wert entspricht.

Während der Messung muss der Laserkopf nicht gespült werden. Jedes Mal, wenn Sie die Messung unterbrechen und der Laser-Analysator ausgeschaltet wird, müssen Sie den Laserkopf erneut spülen.

9.3 Spülung der Keilfenster und des Retroreflektors innerhalb des Prozesses

Die Spülung der Keilfenster und des Retroreflektors während des Prozesses dient dazu, Partikel zu entfernen, die die Messung beeinträchtigen könnten.

Für den Anschluss des Spüleingangs sind Schläuche mit einem Außendurchmesser von 6 mm zu verwenden. Verbinden Sie die Schläuche mit einer Stützhülse, um ein Zusammendrücken zu verhindern. Der empfohlene Spülgasdurchfluss beträgt 0–10 NI/min (je nach Anwendung).

Der Spülgaseingang für die Fenster (DN 6 (Swagelok™), Edelstahlrohr) befindet sich ebenfalls an der Seite des Flanschteils. Das Spülgas gelangt in den Prozess.

Der Transmissionswert kann über eine analoge Schnittstelle ausgegeben und mit einem Alarm versehen werden.

Einzelheiten können der folgenden Zeichnung entnommen werden.

① Spülgaseingang für den Laserkopf

③ Entlüftungsschraube an der Pufferzone (Spülgasausgang)

⁽⁵⁾ Schraube zum Sichern der Entlüftungsschraube

② Spülgaseingang für die Pufferzone (Darstellung ohne Swagelok®-Verbinder)

Entlüftungsschraube am Laserkopf (Spülgasausgang)

© Spülgaseingang für die keilförmigen Fenster im Prozess (Darstellung ohne Swagelok®-Verbinder)

Abbildung 19: Schematische Zeichnung der Installation des Spülrohrs

Die Durchflussmenge während der Spülung beeinflusst die effektive Länge des optischen Weges und damit den Messwert.

Es wird empfohlen, mit einem hohen Spülgasdurchfluss zu beginnen und diesen allmählich zu verringern, insbesondere bei hoher Feuchtigkeit im Prozessgas, um Kondensation auf den Keilfenstern zu vermeiden. Der Messwert ist anfangs sehr gering und steigt mit abnehmendem Spülgasdurchfluss an. An einem bestimmten Punkt pendelt er sich ein und bleibt eine Zeit lang konstant, bis er wieder ansteigt. Wählen Sie einen Spülgasdurchfluss in der Mitte dieses konstanten Zeitraums. Dieser Effekt ist bei kurzen Sonden stärker ausgeprägt als bei langen Sonden.

Achtung

Wenn der Prozessgasstrom konstant bleibt, ergibt sich ein guter Spülgasdurchfluss. Die effektive Länge des optischen Weges bleibt jedoch immer eine Funktion des Prozessgasstroms und muss daher immer berücksichtigt werden.

9.3.1 Einstellung des Spüldrucks

Abbildung 20: Durchflusseinstellung für die Spülung

Die zu messenden Gase sollen im Prozess verbleiben. Aus diesem Grund wird in der Pufferzone ein Überdruck gegenüber dem Prozessdruck eingestellt.

Für den Fall eines Spülgasdruckverlustes müssen sowohl die Pufferzone als auch die Sonde mit einem Rückschlagventil ausgestattet sein, um zu verhindern, dass Prozessgas aus dem Prozess entweicht. Der Überdruck im Laserkopf muss lediglich größer sein als der Umgebungsdruck, um hier eine zweite Dichtungsbarriere zu erhalten.

Abbildung 21: Druckeinstellungen im Messsystem

10 Elektrische Anschlüsse

Für den Errichtungs- und Betriebsprozess sind die einschlägigen IEC-Normen und nationalen Vorschriften bezüglich der Maschinensicherheitsregeln sowie die allgemein anerkannten Regeln der Technik verbindlich. Alle elektrischen Anschlussarbeiten dürfen nur von entsprechend qualifizierten Elektrofachkräften (IEC 60079-14) durchgeführt werden.

Kontrollieren Sie alle elektrischen Anschlüsse. Schließen Sie das Gerät nur an die Stromversorgung an, wenn alle Anschlüsse korrekt durchgeführt wurden.

Der Ex-e -Klemmenkasten des In-situ-Laser-Analysators ist mit 2 x M 16-Kabelverschraubungen mit Dichtung (O-Ring) (für Kabel Ø 4 bis Ø 11 mm) und 1 x M 20-Kabelverschraubung mit Dichtung (O-Ring) (für Kabel Ø 5 bis Ø 14 mm) ausgestattet. Die folgenden Kabelverschraubungen werden verwendet:

PFLITSCH_bg216msHTex: Anzugsdrehmoment 8 N m (M16-Kabelverschraubung); Schirm des Kabels muss auf die PE-Klemmen aufgelegt werden (Vierkantcrimp) => beidseitig geerdet PFLITSCH_bg220msHTex: Anzugsdrehmoment 10 N m (M20-Kabelverschraubung); Schirm des Kabels muss auf

Beachten Sie die folgenden Hinweise zum Ex-e-Klemmenkasten:

die PE-Klemmen aufgelegt werden (Vierkantcrimp) => beidseitig geerdet

- Die Geräte wurden vor der Auslieferung auf die Einhaltung der gültigen Ex-Vorschriften für den Explosionsschutz geprüft.
- Führen Sie in den Ex-e-Klemmenkasten nur fest verlegte Kabel und Leitungen mit entsprechender Zugentlastung ein.
- Verschließen Sie alle nicht benötigten Einführungsöffnungen mit einem zertifizierten Blindstopfen mit Dichtung (O-Ring). Da die Gewindelänge im Inneren des Ex-e-Klemmenkastens weniger als 5 Gewindegänge hat, dürfen nur Kabelverschraubungen und Blindstopfen nach IEC 60079-0 Anhang B mit Dichtung (O-Ring) verwendet werden.
- Verwenden Sie nur explosionsgeschützte geprüfte Kabel- und Metallverschraubungen und Metallblindstopfen mit einer Mindestschutzart von IP65.
- Überprüfen Sie gemäß IEC 60079-17 den festen Sitz aller Kabeleinführungen und Blindstopfen. Weitere Informationen finden Sie in den Spezifikationen der Kabelverschraubungshersteller. Achten Sie außerdem auf die in IEC 60079-14 genannten Bedingungen.

- Die Kabelverschraubungen müssen vor mechanischer Beschädigung geschützt werden. Verwenden Sie zum Schutz der Kabelverschraubungen einen geeigneten Schlagschutz.
- Der Ex-e-Klemmenkasten darf nicht beschädigt werden. Die geprüften technischen Eigenschaften können nicht aufrechterhalten werden, wenn der Klemmenkasten beschädigt wird.

10.1 Für die Anschlüsse verwendete Kabel

Verwenden Sie die folgenden Kabel, um Signale und Stromversorgung anzuschließen:

LiYCY (TP)-10 x 2 x 0,25 **BK** (Ø a = 11,0) zur Übertragung aller Signale vom Ex-e-Klemmkasten der TDL zu einem Schaltschrank (inkl. Stromversorgung).

Optionale Anschlüsse für analoge oder digitale Signale sind im Ex-e-Gehäuse je nach Kundenwunsch verfügbar.

Optional: LiYCY (TP)-12 x 2 x 0,25 **BK** (\emptyset a = 11,3) zur Übertragung aller Signale vom HMI zu einem Schrank (inkl. Stromversorgung)

Abgeschirmte TP-Kabel mit einem Mindestquerschnitt von 0,25 mm² (AWG24) für Drucksensor und/oder Thermometer; die maximale Kabellänge von Druck- und Temperatursensor beträgt 3 m.

10.2 Alternative Kabelwahl

Das Kabel "LiYCY (TP) 12 x 2 x 0,25 **BK**" ist kaum auf dem Markt erhältlich. Als Alternative steht ein Kabel zur Verfügung, das jedoch nicht der IEC 60079-14 hinsichtlich des UV-Schutzes entspricht. Um dieses Kabel zu verwenden, muss es vollständig vor jeglicher UV-Belastung geschützt werden. Das "LiYCY (TP) 12x2x0,25"-Kabel kann nur verwendet werden, wenn diese Anforderungen erfüllt sind:

- Das Kabel muss in einem geeigneten Kabelkanal verlegt oder mit einem geeigneten Schrumpfschlauch und optional mit einem geeigneten Geflechtschlauch ummantelt werden.
- Die Kabeleinführung am Anschlusskasten des ILA1-X000-EX In-situ-Laser-Analysators und am HMI muss mit einem geeigneten Schrumpfschlauch abgedeckt werden.
- Achten Sie außerdem auf die in der Norm IEC 60079-14 festgelegten Bedingungen.

Wenden Sie sich an M&C, um weitere Informationen über Kabelalternativen zu erhalten.

10.3 Anschließen der Klemmen im Ex-e-Klemmenkasten

Die eingebaute Standardklemme ist für den direkten Anschluss von Kupferdrähten ausgelegt. Es dürfen nur geprüfte und zertifizierte Kabel gemäß IEC 60079-0 Anhang B verwendet werden.

Im Inneren des Klemmenkastens befinden sich MTP1,5/S- und MTP2,5-PE-Klemmen. Die MTP2,5-PE-Klemmen sind für den Anschluss der Abschirmung der Kabel an die Erdungsklemme vorgesehen. Die MTP1,5/S-Klemmen sind für die Signal- und Stromversorgungsanschlüsse vorgesehen.

Erforderliches Werkzeug und Zubehör zum Öffnen des Ex-e-Klemmenkastens und zum Anschließen der Drähte:

- Abisolierwerkzeug
- Isolierte Aderendhülsen für Kupferlitze mit einem Querschnitt von 0,25 mm², Aderendhülsenstiftlänge 8 mm

- Isolierte Aderendhülsen für den verdrillten Schirm der Kabel (Querschnitt: 4 mm²); Aderendhülsenstiftlänge 10 mm
- Vierkant-Crimpzange für isolierte Aderendhülsen
- Schrumpfschlauch für die Abschirmung der Kabel
- Drehmomentschraubendreher für die vier Schrauben zur Befestigung des Deckels (Drehmoment 1,3 N m)
- Schlitzschraubendreher (Größe 0,4 x 2,5 mm) zum Öffnen der Klemmen
- Schlitzschraubendreher (Größe 1,2 x 8 mm) für den Anschluss der inneren Erdung

Gehen Sie wie folgt vor, um die Signal-, Stromversorgungs- und Erdungsdrähte an den EX-e-Klemmenkasten anzuschließen:

1. Öffnen Sie den Ex-e-Klemmenkasten vorsichtig, indem Sie jede der vier Schrauben herausdrehen. Ziehen Sie die Schrauben mit einem Drehmomentschraubendreher mit einem Anzugsdrehmoment von 1,3 N m wieder an.

Abbildung 22: Deckel des Ex-Anschlusskastens

① Erdungsklemmen, MTP2.5-PE

Abbildung 23: Anschlussklemmen im Klemmenkasten: MTP1.5/S; MTP2.5-PE

2. Führen Sie die Kabel durch die entsprechenden Kabelverschraubungen. Weitere Informationen finden Sie im folgenden Kommunikationsschema.

Abbildung 24: Kommunikationsschema des ILA1-X000-EX

Bereiten Sie die Kabel für die Signale und die Stromversorgung vor und schließen Sie sie an:

- 1. Verwenden Sie ein Abisolierwerkzeug, um die Drähte auf eine Länge von 8 mm abzuisolieren.
- 2. Schieben Sie eine isolierte Aderendhülse über jede abisolierte Ader und befestigen Sie diese mit der Crimpzange. Die Prüfanforderungen nach DIN 46228 Teil 4 müssen erfüllt sein.
- Die PIN-Belegung ist der folgenden Tabelle zu entnehmen. Drücken Sie den Schlitzschraubendreher (Größe 0,4 x 2,5 mm) auf den integrierten Betätigungsdruckknopf, um die Klemmen zu öffnen. Führen Sie die Drähte so weit wie möglich in die Anschlussöffnung der Klemmleiste ein.

Schließen Sie die Signal- und Stromversorgungsleitungen gemäß der folgenden Tabelle an die Klemmen an:

Pin	Anschluss der elektronischen Platine	Beschreibung	Spezifikation
1	Erdung Stromversorgung		
2	+24 V	Stromversorgung 24 V ±10 %; 10 W	
			Aktive Temperatursonde: +15 V; passive
			Temperatursonde: GND; Signalbereich: 2,4 bis
3	T_EXT +15V/GND		21,6 mA DC; max. Lastwiderstand 500 Ω
			aktive Temperatursonde: Messung; passive
4	T_EXT OUT		Temperatursonde: Messung;
			Aktive Drucksonde: +15 V; passive Drucksonde:
			GND; Signalbereich: 2,4 bis 21,6 mA DC;
5	P_EXT +15V/GND		max. Lastwiderstand 500 Ω
			aktive Drucksonde: Messung; passive
6	P_EXT OUT		Drucksonde: Messung;

Pin	Anschluss der elektronischen	Beschreibung	Spezifikation
	Platine	5	
		Analogausgang	
		Konzentration;	Lastwiderstand 200 - 500 Ω inkl.
7	4-20 mA I- Transmission	4-20mA aktiv	Kabelwiderstand
8	4-20 mA I+ Transmission		
		Analogausgang	
		Transmission;	Lastwiderstand 200 - 500 Ω inkl.
9	4-20 mA I- Konzentration	4-20 mA aktiv	Kabelwiderstand
10	4-20 mA I+ Konzentration		
		CAN-Bus-	
11	CANH	Kommunikation	
12	CANL		
13	RS485 B		
14	RS485 A		
		Ethernet-	
		Verbindung 100	
15	TX- (11) - J1 - weiß/orange	Mbps;	Modbus TCP/IP; Webservice
16	TX+ (10) - J2 - orange		
17	RX- (4) - J3 - weiß/grün		
18	RX+ (5) - J6 - grün		
			Offenes Signal: 1 M Ω oder höher,
			Schließsignal: 2,5 Ω oder geringer; 24 V DC;
			120 mA max.; 1,5 kV Isolierung; NO; 230 V AC
19	Relais AUS	Relais-Ausgang	oder 60 V DC (120 mA);
20	Relais Vsupply +		
			Max. 150 V DC min. 6 V; Kontaktspezifikation:
21	Relais EIN	Relais-Eingang	Widerstand 3,3 k Ω
22	Erdung		

Tabelle 5: Beschreibung der elektrischen Anschlussklemmen im Klemmenkasten

Bereiten Sie die Abschirmung der Kabel vor und schließen Sie sie an die Erdungsklemmen an:

- 1. Wickeln Sie das Schirmgeflecht eines Kabels ab und ziehen Sie es zu einer einzelnen Ader. Der Mindestquerschnitt dieses Kabels ist AWG 12 (4 mm²).
- 2. Verwenden Sie einen geeigneten Schrumpfschlauch für das Geflecht, außer für die letzten 10 mm.
- 3. Schieben Sie auf die letzten 10 mm dieses zusammengezogenen Geflechts AWG12 (4 mm²) eine geeignete isolierte Aderendhülse auf und befestigen Sie diese mit einer Vierkantcrimpzange. Die Prüfanforderungen nach DIN 46228 Teil 4 sind zu erfüllen.
- 4. Drücken Sie den Schlitzschraubendreher (Größe 0,4 x 2,5 mm) auf den integrierten Betätigungsdruckknopf, um die PE-Klemmen zu öffnen. Führen Sie den Draht so weit wie möglich in die Anschlussöffnung der Erdungsklemme ein.

Die Kabel müssen auf beiden Seiten geerdet werden.

Schließen des Ex-e-Klemmenkastens:

- 1. Entfernen Sie alle Fremdkörper aus dem Gerät.
- 2. Verwenden Sie zum Anziehen der Schrauben einen Drehmomentschraubendreher mit einem Drehmoment von 1,3 N m. Das Anziehen der Deckelschrauben mit einem Drehmoment von 1,3 N m bietet die erforderliche Mindestschutzklasse. Ziehen Sie die Schrauben nicht zu fest an, dies kann die Schutzwirkung beeinträchtigen.

Ein unsachgemäßer Einbau und Betrieb des Gehäuses kann zum Erlöschen der Garantie führen.

Alle Kabel sind geschirmt und die Abschirmungen sind auf beiden Seiten mit der Erde verbunden.

AWG24 12 verdrillte Paare Einzelne Drähte Kabel 4

Abbildung 25: Analysator/HMI-Anschluss – aktive Temperatur-/Drucksonden

Embracing Challenge

10.3.1 Aktive Analogausgänge

Aktive Analogausgänge benötigen keine externe Stromversorgung der Ausgangsklemme. Der Anschluss der Ausgangssignale ist in Abbildung 26 dargestellt. Für die aktiven Analogausgänge gibt es eine 15 V DC-Spannungsversorgung. Dieser Ausgang darf nicht über längere Zeit kurzgeschlossen werden, da dies in einer sehr starken Erwärmung der Widerstände auf der Platine resultiert, was nach einer gewissen Zeit zu deren Ausfall führt.

Abbildung 27: Exemplarische Verwendung des aktiven Analogausgangs

Aktive Analogeingänge **benötigen keine** externe Stromversorgung.

10.3.2 Aktive oder passive Analogeingänge

Passive Analogeingänge benötigen für den Betrieb eine externe Spannungsversorgung. Aktive Analogeingänge benötigen keine externe Speisung der Eingangsklemme. Für die aktiven Analogeingänge gibt es eine 15 V DC-Spannungsversorgung. Dieser Eingang darf nicht über längere Zeit kurzgeschlossen werden, da dies in einer sehr starken Erwärmung der Widerstände auf der Platine resultiert, was nach einer gewissen Zeit zu deren Ausfall führt.

Abbildung 28: Verwendung eines aktiven oder passiven analogen Temperatureingangs mit entgegengesetzter Polarisierung

Abbildung 29: Verwendung eines aktiven oder passiven analogen Druckeingangs mit entgegengesetzter Polarisation

Passive Analogausgänge **benötigen** eine externe Stromversorgung.

Aktive Analogeingänge **benötigen** keine externe Stromversorgung.

10.4 Anschluss für Potentialausgleich am Gehäuse

Der Schutz- und Potentialausgleichsleiteranschluss des explosionsgeschützten Gehäuses des In-situ-Laser-Analysators muss gemäß den Anforderungen der IEC 60079 ff., IEC 61439 ff. und IEC 60364-5-54 geerdet sein. Der Anschluss des Potentialausgleichs befindet sich an der Unterseite der Hauptplatte des Laserkopfes. Der Anschluss für den Potenzialausgleich ist ein Crimp-Ringkabelschuh mit einer Kontaktscheibe Ø 6,4 mm.

① Anschluss für Potentialausgleich mit Crimp-Ringkabelschuh und Kontaktscheibe Ø 6,4 mm.

Abbildung 30: Anschluss für Potentialausgleich

Die folgenden Werkzeuge werden benötigt:

- Drehmoment-Schlitzschraubendreher
- Crimpzange

Gehen Sie wie folgt vor, um das Erdungskabel anzuschließen:

1. Lösen Sie die Schraube, die den Crimp-Ringkabelschuh und die Kontaktscheibe hält.

- 2. Der Querschnitt des Erdungskabels muss mindestens 4 mm² betragen. Stecken Sie den Erdungsdraht in den Crimp-Ringkabelschuh und verwenden Sie eine Crimpzange, um ihn zu befestigen.
- Schrauben Sie den Crimp-Ringkabelschuh mit dem angeschlossenen Draht und der Kontaktscheibe wieder auf die Hauptgrundplatte des Laserkopfes. Das Drehmoment der Schraube (ISO 4762 M6 x 10 -A4) beträgt 5 N m.

11 Batteriebetriebene Real-Time Clock (RTC)

Die Echtzeituhr (RTC) behält die Zeit im Analysator auch dann bei, wenn die Stromversorgung abgeschaltet ist. Um den Betrieb der Echtzeituhr (RTC) im Falle einer Abschaltung des Systems fortzusetzen, wird sie mit einer hochtemperaturbeständigen Keramikbatterie versorgt. Die Batterie ist direkt mit dem integrierten Schaltkreis für die Stromversorgung (PMIC) verbunden. Es wird kein Strom an das Ex-e-Gehäuse weitergeleitet, da nur das RTC-System mit Strom versorgt wird.

Klassifizierung und Modell der Batterie: Wiederaufladbarer Lithium-Ionen-Akku (hochtemperaturbeständig)

Informationen zur Batterie	
Hersteller	NGK
Modell	ЕТ2016С-Н
Positive Elektrode	LiCoO2
Negative Elektrode	Li4Ti5O12 (LTO)
Elektrolyt	Li[BF4] (Lithiumtetrafluoroborat) mit organischem Lösungsmittel (nicht wasserbaltig)
Bauweise	Hermetisch verschlossen
Lebensdauer der Batterie	Ca. 10 Jahre
Stromversorgung des RTC	Ca. 5 Jahre (z. B. für ein hinterlegtes Sicherungssystem bei 25 °C)

Der Batterietyp ist auch in der Freigabeliste Tabelle 14 (Sekundärzellen) der EN 60079-0 enthalten.

Detaillierte Parameter der ET2016C-H sind dem Anhang zu entnehmen.

12 Ausrichtung des In-situ-Laser-Analysators

Gefahr durch Laserstrahlung!

Laserklasse des Laserkopfes ohne Sonde:

O₂-Laser: Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen **SO₂-Laser:** Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten. Schalten Sie die Stromversorgung vor ieder Montage Wartung oder

Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus.

Spülen Sie den Laserkopf, die Pufferzone zwischen Laserkopf und Prozessflansch sowie die Keilfenster und den Retroreflektor im Prozess, bevor Sie die Ausrichtung vornehmen.

Der Ausrichtungsvorgang muss mit großer Sorgfalt durchgeführt werden, um sicherzustellen, dass das Gerät die Messungen korrekt durchführt.

Der Laserkopf und die Sonde werden im Werk vorjustiert. Um die maximale Lasertransmission zu erreichen, kann es erforderlich sein, den Laserkopf zu drehen. Um den Laserkopf zu drehen, muss die Klemme, die den Laserkopf hält, leicht geöffnet werden.

Die Übertragung kann auf dem HMI (optional) unter **Hauptmenü -> Ausrichtung** betrachtet werden, wo die Übertragung in **%** angezeigt wird. Alternativ kann ein PC an die Serviceschnittstelle angeschlossen werden, die die Übertragung mithilfe der Servicesoftware darstellt. Die Beschreibung der Software und der Bedienung sind in Kapitel 13 zu finden.

Der Transmissionswert kann über eine analoge Schnittstelle ausgegeben und mit einem Alarm versehen werden.

Eine andere Möglichkeit ist die Verwendung eines Multimeters, das auf Amperemeter eingestellt ist und einen Widerstand von 200 Ω bis 500 Ω hat.

Abbildung 31: Transmissionsmessung mit einem Multimeter

12.1 Laserkopfausrichtung für die Voreinstellung des Analysators

- Setzen Sie den Trimmflansch auf seine Standardeinstellung zurück.
- Schrauben Sie die Kopfklemme ab.
- Achten Sie dabei darauf, dass Sie nicht das Fenster an der Kopfseite berühren und dass kein Staub in die Pufferzone eindringen kann.
- Achten Sie darauf, dass der Kopf nicht nach unten fällt.

Abbildung 32: Klemme am Laserkopf

Beginnen Sie in einem Winkel, in dem die Pfeile der Fenster auf dem Laserkopf und auf der Sondenseite in entgegengesetzte Richtungen zeigen. Beobachten Sie die Transmission des Analysators und suchen Sie einen Winkel in der Nähe dieser Position, der die höchstmögliche Transmission erzielt. Beginnen Sie, die Kopfklemme zu schließen. Die Transmission kann sich verringern, sobald die Kopfklemme festgeschraubt wird. Suchen Sie in diesem Fall die optimale Ausrichtung mit Hilfe der Trimmflanschschrauben und ziehen Sie die Kopfklemmschraube wieder an.

Abbildung 33: Fensterorientierung

Setzen Sie den Vorgang zum Anziehen der Klemmschraube und zum Ausrichten des Trimmflansches fort, bis die Kopfklemmschraube mit einem Drehmoment von 10 N m geschlossen ist.

12.2 Ausrichten des In-situ-Laser-Analysators mit der Justageeinheit

Spülen Sie den Laserkopf, die Pufferzone zwischen Laserkopf und Prozessflansch sowie die verkeilten Fenster und den Retroreflektor im Prozess, bevor Sie die Ausrichtung vornehmen. Der Ausrichtungsvorgang muss mit großer Sorgfalt durchgeführt werden, um sicherzustellen, dass das Gerät die Messungen korrekt durchführt.

Der Laserkopf und die Sonde sind werkseitig vorjustiert. Aufgrund von Montagetoleranzen für zusätzliche Komponenten (Isolierflansch, Justageeinheit etc.) kann es notwendig sein, diese Ausrichtung geringfügig zu korrigieren.

① Dicht verschweißte Tellerfedern

② Zentrierringe

④ Sicherungsklammern

③ Gylon[®]-Dichtungen, max. Temp. 260 °C

[©]Vierkantschrauben zum Einstellen der Ausrichtung

Abbildung 34: Ausrichtung mit der Justageeinheit

Gehen Sie wie folgt vor, um den In-situ-Laser-Analysator mit Hilfe der Justageeinheit auszurichten:

- 1. Prüfen und notieren Sie den Abstand X (rot markiert in Abbildung 34) für alle drei Sechskantschrauben. Der Abstand X sollte im Bereich von 5,5 mm bis 6 mm liegen (Standardwert 6 mm).
- 2. Überprüfen und notieren Sie die Lasertransmission mit Hilfe des HMI, eines PCs oder eines Multimeters.
- 3. Wählen Sie eine Schraube aus. Schreiben Sie auf, welche Schraube Sie gewählt haben. Ziehen Sie diese Schraube leicht an. Das Maß X darf nicht kleiner als 5,5 mm sein.
- 4. Überprüfen und notieren Sie die Lasertransmission mit Hilfe des HMI, eines PCs oder eines Multimeters.
- 5. Wenn die **Transmission** beim Anziehen der Schraube **ansteigt**, kann diese etwas weiter angezogen werden (das Maß X darf nicht kleiner als 5,5 mm sein), aber nicht so weit, dass die Transmission wieder abnimmt.
- 6. Wenn die **Transmission** gleich zu Beginn **abnimmt**, muss die Schraube wieder in ihre ursprüngliche Position gebracht werden und eine andere Schraube gewählt werden.
- 7. Wiederholen Sie diesen Vorgang mit der zweiten und dritten Schraube.

13 Anzeige- und Bedieneinheit (HMI)

Das externe HMI (Produktname: ILA HMI DCU10 EX) kann zur Bedienung, Konfiguration oder Diagnose des In-situ-Laser-Analysators ILA1-X000-EX verwendet werden.

Es kann direkt an den Anschlusskasten des Laser-Analysators oder an eine Stelle, an der die Signale des Laser-Analysators zur Verfügung stehen (z.B. Schaltschrank oder Anschlusskasten), angeschlossen werden. Die Stromversorgung kann über das Analysatorkabel oder über ein geeignetes separates Netzteil mit geeigneter Zuleitung erfolgen (Nutzung der zweiten Kabeldurchführung).

Das HMI ist mit einem 128 x 64 Pixel großen LCD-Display (entspricht 8 x 21 Zeichen) ausgestattet. Das HMI ermöglicht die Überwachung von vordefinierten Messungen und die Bearbeitung der wichtigsten Parameter. Der Benutzer kann auf die Menüpositionen zugreifen und zwischen ihnen wechseln, indem er die Tasten oberhalb und unterhalb des Displays mit kapazitiver Touch-Funktionalität verwendet.

Abbildung 35: HMI-Display mit Standardprozessparametern

13.1 Montage

Kontakt mit stromführenden Teilen!

Wenn Sie bei der Installation oder Deinstallation des HMI mit stromführenden Teilen in Berührung kommen, kann dies zum Tod oder zu schweren Verletzungen führen.

Vergewissern Sie sich, dass die Stromversorgung während der Installation und Deinstallation getrennt ist.

Unterbrechen Sie die Stromzufuhr und warten Sie ca. 4 Sekunden, bevor Sie das HMI-Gehäuse öffnen.

13.2 Informationen zur ATEX-Installation

Qualifiziertes Personal

Der ILA HMI DCU10 EX kann nur durch qualifiziertes Personal installiert werden. Qualifiziertes Personal muss mindestens über die folgenden Kenntnisse verfügen:

- Unterweisungen im Explosionsschutz
- Ausbildung im elektrotechnischen Bereich
- Detaillierte Kenntnisse der Betriebsanleitung der geltenden Sicherheitsbestimmungen.

Installieren, warten oder reparieren Sie den ILA HMI DCU10 EX nicht, wenn explosionsgefährdete Atmosphäre besteht.

Öffnen Sie den Anschlusskasten des In-situ-Laser-Analysators und des HMI nicht in explosionsgefährdeten Bereichen.

Ein leicht zugänglicher Hauptschalter mit entsprechender Beschriftung muss extern vorhanden sein.

Wenn die Standardkonfiguration durch die Verwendung von nicht spezifizierten und von M&C nicht genehmigten Komponenten oder Teilen geändert wird, ist die Baumusterprüfbescheinigung nicht mehr gültig. Reparaturen und Serviceleistungen mit Teilen, die nicht von M&C spezifiziert sind, führen ebenfalls zum Erlöschen der ATEX-Bescheinigung.

Installation in einer Zone, die nicht in der ATEX-Bescheinigung angegeben ist:

Die ATEX-Bescheinigung ist nicht gültig, wenn der ILA HMI DCU10 EX in einer Zone installiert wird, die nicht in der ATEX-Bescheinigung aufgeführt ist.

Befolgen Sie genau die Hinweise in der ATEX-Bescheinigung.

Elektrostatische Entladungen können in Gefahrenbereichen als Zündfunken wirken. Verwenden Sie das Gerät nicht in Bereichen, in denen:

- mechanische Reibungs- und Trennvorgänge auftreten,
- Elektronen versprüht werden (z.B. in der Nähe von elektrostatischen Lackieranlagen) oder
- pneumatisch geförderte Stäube vorhanden sind.

13.3 Zünddurchschlagssichere Spalte an der druckfesten Kapselung (Ex-d-Gehäuse)

Die zünddurchschlagssicheren Spalte an der druckfesten Kapselung des HMI-Gehäuses dürfen nicht nachgearbeitet oder repariert werden.

Abbildung 36: Zünddurchschlagssichere Spalte am HMI-Gehäuse

13.4 Anschluss des HMI an den In-situ-Laser-Analysator

Für den Errichtungs- und Betriebsprozess sind die einschlägigen IEC-Normen und nationalen Vorschriften des Gerätesicherheitsgesetzes sowie der allgemein anerkannte Stand der Technik verbindlich.

Alle elektrischen Anschlussarbeiten dürfen nur von entsprechend qualifizierten Elektrofachkräften (IEC 60079-14) durchgeführt werden.

Prüfen Sie alle elektrischen Anschlüsse. Schließen Sie das Gerät nur dann an die Stromversorgung an, wenn alle Anschlüsse korrekt angeschlossen sind.

Der In-situ-Laser-Analysator verfügt über einen Klemmenkasten zum Anschluss an die Klemmen im Inneren des HMI-Gehäuses.

Das Gehäuse des Klemmenkastens des ILA1-X000-EX In-situ-Laser-Analysators ist als Ex-e-Klemmenkasten zertifiziert. Dieser Klemmenkasten ist mit 2 x M 16-Kabelverschraubungen mit Dichtung (O-Ring) (für Kabel Ø 4 bis Ø 11 mm) und 1 x M 20-Kabelverschraubung mit Dichtung (O-Ring) (für Kabel Ø 5 bis Ø 14 mm) ausgestattet. Die Kabelverschraubungen am Klemmenkasten haben eine höhere Schutzart (IP) als IP54 für explosive Gasatmosphären.

Das Gehäuse des HMI, in dem sich die elektrischen Anschlüsse befinden, ist als Ex-d-Gehäuse zertifiziert. Die Kabelverschraubung des HMI-Gehäuses muss die Schutzart IP6X für staubexplosionsgefährdete Bereiche aufweisen. Daher muss die Kabelverschraubung des HMI-Gehäuses mit Epoxid versiegelt werden, um IP6X und eine bessere Dichtigkeit als die gemäß EN60079-14 Anhang E / IEC 60079-14 Anhang E zu erreichen.

13.4.1 Elektrische Kabel für den Anschluss des HMI an den In-situ-Laser-Analysator

Verwenden Sie die folgenden Kabel, um das HMI mit dem In-situ-Laser-Analysator zu verbinden:

13.4.2 Alternative Kabelwahl

Das Kabel "LiYCY (TP) 12 x 2 x 0,25 **BK**" ist kaum auf dem Markt erhältlich. Als Alternative steht ein Kabel zur Verfügung, das jedoch nicht der Norm IEC 60079-14 hinsichtlich des UV-Schutzes entspricht. Um dieses Kabel zu verwenden, muss es vollständig vor jeglicher UV-Belastung geschützt werden. Das "LiYCY (TP) 12 x 2 x 0,25"-Kabel kann nur verwendet werden, wenn diese Anforderungen erfüllt sind:

- Das Kabel muss in einem geeigneten Kabelkanal verlegt oder mit einem geeigneten Schrumpfschlauch und optional mit einem geeigneten Geflechtschlauch ummantelt werden.
- Die Kabeleinführung am Anschlusskasten des In-situ-Laser-Analysators ILA1-X000-EX und am HMI muss mit einem geeigneten Schrumpfschlauch abgedeckt werden.
- Achten Sie außerdem auf die in IEC 60079-14 festgelegten Bedingungen.

Wenden Sie sich an M&C, um weitere Informationen über Kabelalternativen zu erhalten

13.5 Ex-d-zertifizierte Kabelverschraubung mit Epoxidharz für Längsdichtigkeit

Das Gehäuse des HMI, in dem sich die elektrischen Anschlüsse befinden, ist als Ex-d-Gehäuse zertifiziert. Die Kabelverschraubung des HMI-Gehäuses muss mit Epoxidharz abgedichtet werden, um die Schutzart IP6X für staubexplosionsgefährdete Bereiche zu erreichen, und muss verhindern, dass Gas oder Dampf durch die Lücken zwischen den einzelnen Adern des Anschlusskabels (nicht längsdichtes Kabel) eindringen kann. Es dürfen nur Kabelverschraubungen verwendet werden, die nach EN60079-1/IEC60079-1 zertifiziert sind und die Dichtheit nach EN60079-14 Anhang E/ IEC60079-14 Anhang E für nicht längsgedichtete Kabel erfüllen. Für längsgedichtete Kabel genügen nach EN60079-14 geprüfte Kabelverschraubungen, die nach EN60079-1 (db) zertifiziert sind.

Für jede einzelne Kabeleinführung am Ex-d-Gehäuse darf maximal ein für den Einsatz in explosionsgefährdeten Bereichen zertifiziertes Reduzierstück verwendet werden. Alle Kabelverschraubungen müssen als druckfest "db" oder "Db" und als staubexplosionsgeschützt "tb" zertifiziert sein und mindestens die Schutzart IP66 aufweisen, die der Kennzeichnung auf dem HMI-Gehäuse entspricht.

Alle nicht benutzten Geräteöffnungen müssen mit einem zertifizierten Blindstopfen versehen werden, der mindestens der Kennzeichnung auf dem HMI-Gehäuse entspricht. Eventuell verwendete Kunststoff-Gewindeschutzstopfen (Versandstopfen), die mit dem Gerät geliefert werden, müssen bei der Installation ersetzt werden.

Beispiele für Kabelverschraubungen sind:

PXSS2K-REX von CMP Products:

- Größe 25, 3/4" NPT, Teile-Nr. 25PXSS2KREX1RA532, für einen äußeren Kabelaußendurchmesser von 11,1 mm bis 20 mm.
- Nur in Kombination mit einem Reduzierstück Typ 737 (3/4" NPT auf M 20): Größe 20, M 20, Artikel-Nr. 20PXSS2KREX1EX5) für einen Gesamtkabelaußendurchmesser von 6,5 mm bis 14 mm.

Wenden Sie sich an M&C für weitere Informationen über geeignete Kabelverschraubungen.

13.5.1 Installationshinweise für den Typ PXSS2K-REX

Die Kabelverschraubung PXSS2K-REX ist nur für feste Installationen geeignet. Achten Sie darauf, dass das Kabel sicher in der Kabelverschraubung befestigt ist, damit es nicht herausgezogen oder verdreht werden kann.

Die Kabelverschraubung PXSS2K-REX ist für den Einsatz in staubexplosionsgefährdeten Bereichen zugelassen. Die Kabelverschraubung muss mit einem Epoxidharz abgedichtet werden, um eine Schutzart von IP6X und eine Dichtigkeit besser als die gemäß EN60079-14 Anhang E / IEC 60079-14 Anhang E zu erreichen.

Normalerweise ist die PXSS2K-REX Kabelverschraubung vormontiert und Teil der Lieferung.

Nicht vormontierte PXSS2K-REX Kabelverschraubung:

Lesen und befolgen Sie zur Montage der PXSS2K-REX-Kabelverschraubung genau die Anweisungen im Original-Handbuch des Herstellers. Das Original-Herstellerhandbuch wird mit der Kabelverschraubung PXSS2K-REX geliefert.

Achten Sie darauf, dass die Drähte lang genug sind, um an die Klemmen im Inneren des HMI-Gehäuses angeschlossen zu werden.

Das Schirmgeflecht des Kabels muss entflochten und zu einer einzigen Ader zusammengefügt werden. Verwenden Sie für das Geflecht bis auf die letzten 10 mm einen geeigneten Schrumpfschlauch, lassen Sie aber zwischen dem Außenmantel des Kabels und dem Beginn des Schrumpfschlauchs 9 mm Platz, damit das Epoxidharz in das Geflecht eindringen kann.

13.6 Anschluss der Klemmen innerhalb des HMI

Installieren, warten oder reparieren Sie das ILA HMI DCU10 EX nicht in explosionsgefährdeten Bereichen.

Öffnen Sie den Anschlusskasten des In-situ-Laser-Analysators und das Gehäuse des HMIs nicht in explosionsgefährdeten Bereichen.

Wenn die Standardkonfiguration durch die Verwendung von nicht spezifizierten und nicht von M&C genehmigten Komponenten oder Teilen geändert wird, verliert die Baumusterprüfbescheinigung ihre Gültigkeit. Reparaturen und Serviceleistungen mit Teilen, die nicht von M&C spezifiziert sind, machen die Ex-Bescheinigung ebenfalls ungültig.

Die Klemmen für den Anschluss des HMI an die Stromversorgung, die innere Erdung und den Klemmenkasten des In-situ-Laser-Analysators befinden sich im Inneren des HMI. Die für den Anschluss erforderliche Verkabelung muss separat bestellt werden.

Erforderliches Werkzeug und Zubehör zum Öffnen des HMI-Gehäuses und zum Anschließen der Kabel:

- Abisolierwerkzeug
- isolierte Aderendhülsen für Kupferlitze mit einem Querschnitt von 0,25 mm², Aderendhülsenstiftlänge: 8 mm
- Crimp-Ringkabelschuh mit einem Querschnitt von 4 mm² M5 oder N10-24 UNC
- Schrumpfschlauch zur Abschirmung des Kabels
- Crimpzange für isolierte Aderendhülsen
- Crimpzange für Crimp-Ringkabelschuhe
- Sechskantschlüssel (Größe 1,5) für die Madenschraube, die den Deckel des Gehäuses sichert
- Sechskantschlüssel (Größe 2) zum Lösen der Befestigungsschrauben
- Schlitzschraubendreher (Größe 0,4 x 2,5 mm) zum Öffnen der Klemmen
- Schlitzschraubendreher (Größe 1,2 x 8 mm) für den Anschluss der inneren Erdung

Gehen Sie wie folgt vor, um das HMI-Gehäuse zu öffnen:

- 1. Lösen Sie die Madenschraube an der Vorderseite des HMI-Gehäuses, mit der der Deckel befestigt ist, mit einem Sechskantschlüssel (Größe 1,5). Die Madenschraube muss nicht entfernt werden.
- 2. Schrauben Sie den Deckel gegen den Uhrzeigersinn ab und nehmen Sie ihn aus dem HMI-Gehäuse. Im Inneren des HMI-Gehäuses befindet sich das Display mit der Leiterplatte. Die Leiterplatte ist durch vier Passschrauben mit dem HMI-Gehäuse verbunden.

① Platine mit Display

⁽²⁾ Befestigungsschrauben zum Halten der Platine (Anzugsdrehmoment: 0,65 N m)

Abbildung 37: Platine und Display im HMI-Gehäuse

Die Platine mit dem Display kann um 180° gedreht werden. Achten Sie auf die Ausrichtung Ihres Displays. Setzen Sie das Display in der gleichen Position ein, in der Sie es entfernt haben.

3. Lösen Sie die vier Befestigungsschrauben mit einem Innensechskantschlüssel (Größe 2). Um die Befestigungsschrauben wieder anzuziehen, benötigen Sie ein Anzugsmoment von 0,65 N m. Entfernen Sie die Befestigungsschrauben und legen Sie sie beiseite. Die Platine ist mit den elektrischen Anschlüssen verdrahtet. Klappen Sie die Platine mit dem Display nach oben oder zur Seite. Im Inneren des HMI-Gehäuses befinden sich die elektrischen Anschlüsse.

① Verbindung zur Erde (zum Anschluss von zwei Ringkabelschuhen)

② Klemmen für elektrische Anschlüsse: MTP1.5/S; MTP1.5/S-PE

Abbildung 38: Anschlüsse im Inneren des HMI-Gehäuses (Platine nicht abgebildet)

Bereiten Sie die Drähte vor und schließen Sie sie an:

- 1. Verwenden Sie ein Abisolierwerkzeug, um die Drähte auf eine Länge von 8 mm abzuisolieren.
- 2. Schieben Sie eine isolierte Aderendhülse über jede abisolierte Ader und befestigen Sie diese mit der Crimpzange. Die Prüfanforderungen nach DIN 46228 Teil 4 müssen erfüllt sein.
- 3. Verdrillen Sie die entsprechenden Paare erneut (1&2; 3&4; 5&6 usw.)
- 4. Die PIN-Belegung ist der folgenden Tabelle zu entnehmen. Drücken Sie den Schlitzschraubendreher (Größe 0,4 x 2,5 mm) auf den integrierten Betätigungsdruckknopf, um die Klemmen zu öffnen. Führen Sie die Drähte so weit wie möglich in die Anschlussöffnung des Klemmenblocks ein.

Schließen Sie die Drähte gemäß der folgenden Tabelle an die Klemmen an:

PIN	Farbe	Funktion
1	weiß	4-20 mA AUS 4 I-
2	braun	4-20 mA AUS 4 I+
3	grün	4-20 mA AUS 3 I-
4	gelb	4-20 mA AUS 3 I+
5	grau	4-20 mA AUS 2 I-
6	pink	4-20 mA AUS 2 I+
7	blau	4-20 mA AUS 1 I-
8	rot	4-20 mA AUS 1 I+
9	schwarz	4-20 mA EIN 2 Messung
10	violet	4-20 mA EIN 2 +15 V/GND
11	grau-pink	4-20 mA EIN 1 Messung
12	rot-blau	4-20 mA EIN 1 +15 V/GND
13	weiß-grün	Relais 1 EIN V-
14	braun-grün	Relais 1 EIN V+
15	weiß-gelb	Relais 2 EIN V-
16	gelb-braun	Relais 2 EIN V+
17	weiß-grau	Relais 1 AUS V+
18	grau-braun	Relay 1 AUS V-

PIN		Farbe	Funktion
	19	weiß-pink	Relais 2 AUS V+
	20	pink-braun	Relais 2 AUS V-
	21	weiß-blau	+24 V
	22	braun-blau	Erdung der Stromversorgung
	23	weiß-rot	CANH
	24	braun-rot	CANL

Tabelle 6: Elektrische Anschlüsse im Inneren des HMI-Gehäuses

Verbinden Sie die Abschirmung des Kabels mit der Erde (siehe Abbildung 38):

Der Erdungsanschluss verbindet zwei Ringklemmen mit der Erde. Die erste Ringklemme ist bereits angeschlossen. 1. Der Querschnitt des Erdungsanschlusskabels beträgt AWG 12 (4 mm²).

- Schieben Sie einen AWG12-Crimp-Ringkabelschuh M5 oder N10-24 UNC über die Einzelader und befestigen Sie ihn mit der Crimpzange für Ringkabelschuhe. Die Prüfanforderungen nach DIN 46228 Teil 4 müssen erfüllt sein.
- 3. Lösen Sie mit einem Schlitzschraubendreher (Größe 1,2 x 8 mm) die Schraube für die Verbindung zur Erde. Dadurch wird die erste Ringklemme gelöst.
- 4. Setzen Sie die erste Ringklemme und die neue Ringklemme ein.
- 5. Ziehen Sie die Schraube für den Erdungsanschluss mit einem Schlitzschraubendreher (Größe 1,2 x 8 mm) fest (4,5 Nm).

Die Abschirmung des Kabels muss auf beiden Seiten des Kabels angeschlossen werden (EMV-Anforderung). Schließen Sie das HMI-Gehäuse:

- Klappen Sie die Platine mit dem Display wieder auf die elektrischen Anschlüsse. Verwenden Sie einen Sechskantschlüssel (Größe 2), um die vier Montageschrauben zu befestigen. Zum Anziehen der Montageschrauben benötigen Sie ein Anzugsdrehmoment von 0,65 N m.
- 2. Schrauben Sie den Deckel wieder auf das HMI-Gehäuse (im Uhrzeigersinn).
- 3. Ziehen Sie die Madenschraube an der Vorderseite des HMI-Gehäuses mit einem Sechskantschlüssel (Größe 1,5) an, um den Deckel zu befestigen.

13.7 Anschluss des Potenzialausgleichs an das HMI-Gehäuse

Der Schutz- und Potentialausgleichsleiteranschluss des HMI muss gemäß den Anforderungen von IEC 60079 ff., IEC 61439 ff. und IEC 60364-5-54 geerdet sein. Der Anschluss für den Potenzialausgleich befindet sich an der Seite des HMI-Gehäuses. Der Anschluss ist ein Crimp-Ringkabelschuh mit einer Sicherungsscheibe.

① Anschluss für Potentialausgleich mit Crimp-Ringkabelschuh und Sicherungsscheibe Abbildung 39: Anschluss für Potentialausgleich

Die folgenden Werkzeuge werden benötigt:

- Drehmoment-Schlitzschraubendreher
- Crimpzange für Ringkabelschuhe

Gehen Sie zum Anschluss des Erdungsdrahtes wie folgt vor:

- 1. Lösen Sie die Schraube, die den Crimpring hält, und die Sicherungsscheibe.
- 2. Der Querschnitt des Erdungsdrahtes muss mindestens 4 mm² betragen. Stecken Sie den Erdungsdraht in den Crimpring und verwenden Sie eine Crimpzange für Ringkabelschuhe, um ihn zu befestigen.
- 3. Schrauben Sie den Crimpring mit dem angeschlossenen Draht und der Sicherungsscheibe wieder auf das HMI-Gehäuse. Das Drehmoment der Schraube (N10-24 UNC Länge 0,25") beträgt 4,5 N m.

13.8 Inbetriebnahme des HMI

Der Startvorgang dauert etwa 3 Minuten. Beim Starten wird zunächst "Initialisierung" angezeigt. Dann führt das System einen Selbsttest durch. Anschließend geht das System in den "Ruhezustand" über. Wenn das System auf automatische Messung eingestellt ist, startet es die Messung direkt, nachdem es sich im Ruhezustand befindet.

Wenn das System einen Fehler oder eine Warnung aufweist, wird der Bildschirmschoner deaktiviert. Das Wort "Messung", das in einem bestimmten Intervall angezeigt wird, weist auf einen ordnungsgemäßen Betrieb hin. In diesem Fall läuft das System ohne jegliche Warnung oder Fehler.

13.9 Menüführung

Das HMI verfügt über zwei verschiedene Berechtigungsebenen (=> insgesamt drei Ebenen). Im Administrator-Menü (User) können geschulte Mitarbeitende des Kunden mit einem Passwort auf Display-Messungen, Parameter und IOs (Inputs/Outputs) zugreifen.

Abbildung 40: HMI-Zugangssstruktur

Von der HMI-Ebene ausgehend hat der Benutzer Zugang zum Menü. Die Menüstruktur ist wie folgt (Deutsch):

Abbildung 41: HMI-Menüstruktur - Deutsch

13.9.1 Messungen

Die Messungen in der Standardansicht sind in der folgenden Abbildung dargestellt.

Oxygen	
Conc. (ppm):	20.95
R 2:	92.02
Trans. (%):	98.1
Pres.Bar:	1.0
Temp.(C):	22.4
State:	Meas.
SN: 200121-001	

Abbildung 42: HMI-Display: Messungen

Einträge in dieser Kategorie sind schreibgeschützt.

MESSUNGEN		
Display	Beschreibung	
ALIAS (z.B.: SO ₂) Konzentration	Zeigt den Konzentrationswert an (es können nur wenige ALIAS-Punkte	
(ppm)	sein)	
R2	R ² ist eine lineare Regressionskennzahl. Sie zeigt die Qualität der Messung	
	(R^2) an und sollte > 0,9 sein. Der Höchstwert ist 1,0	
TRAN. (%)	Zeigt den Transmissionswert in % an	
Pres. BAR	Zeigt den Druckwert des Prozessgases an	
Temp. (C)	Zeigt den Temperaturwert des Prozessgases an	
State	Zeigt den aktuellen Status des ILA1-B000-EX (Messen, Aufwärmen, Störung,	
	Wartung usw.); s. detaillierte Erklärung in Kapitel 12.2	
SN / IP / CAN-Bus-ID	Die Anzeige wechselt zwischen Seriennummer, IP und CAN-Bus-ID des	
	Analysators	

```
Tabelle 7: Beschreibung des HMI-Displays – Messungen
```


AUSRICHTUNG		
Display	Beschreibung	
Ausrichtung	Die Transmission ist ein Maß für die Lichtmenge, die vom Sender (meist	
	eine Laserdiode) durch das Messgas zum Empfänger zurückkehrt. Daher	
	werden hier Effekte wie Staubbelastung, Verschmutzung der optischen	
	Elemente (z. B. Keilfenster) oder Ausrichtungsabweichungen	
	(Ausrichtungsgenauigkeit, Abweichung durch asymmetrische	
	Wärmeausdehnung usw.) sichtbar. Der Transmissionswert sollte nach	
	Neuausrichtung und Reinigung mindestens 100 % betragen. Da der Wert in	
	der Werkseinstellung genormt ist, kann er nach der Neujustierung und	
	Reinigung einen Wert größer als 100 % aufweisen.	

Tabelle 8: Beschreibung des HMI-Displays – Ausrichtung

Der Parameter Transmission in "Ausrichtung" ist schreibgeschützt.

13.9.2 Parameter

Für die Punkte dieser Kategorie besteht sowohl ein lesender als auch ein schreibender Zugriff.

EINSTELLUNGEN I		
Display	Beschreibung	Zulässiger Wertebereich
Helligkeit	Hier kann die gewünschte	010
	Helligkeit des LCD-Displays	
	eingestellt werden.	
CAN-Bus-ID	Hier muss die eindeutige CAN-	1256
	Bus-ID eingetragen werden.	
Sprache	Hier kann die gewünschte	
	Sprache gewählt werden.	

Tabelle 9: Beschreibung der Einstellungen I im HMI

13.9.3 Analogeingänge und -ausgänge (IOs)

Unterelemente von "AIN x" oder "AOUT x" können bearbeitet werden.

Einstellungen Ausgänge "4-20 HMI"			
Display	Beschreibung	Zulässiger Wertebereich	
OUT 1 Cal.	Kalibrierung von Ausgang 1	0,0099,99	
OUT 2 Cal.	Kalibrierung von Ausgang 2	0,0099,99	
OUT 3 Cal.	Kalibrierung von Ausgang 3	0,0099,99	
OUT 4 Cal.	Kalibrierung von Ausgang 4	0,0099,99	
IN 1 Cal.	Kalibrierung von Eingang 1	0,0099,99	
IN 2 Cal.	Kalibrierung von Eingang 2	0,0099,99	

Tabelle 10: Beschreibung des "4-20 HMI"-Panel im HMI

Einstellungen Eingänge "Analysator Kal."			
Display	Beschreibung	Zulässiger Wertebereich	
Span Cal.	Kalibrierung des Kalibrierpunktes des Gasmesssignals. Das Kalibriergas muss mindestens 5 Minuten vor Beginn der Kalibrierung bereitgestellt werden. Die Konzentration des Kalibriergases muss in der gleichen Einheit angegeben werden, wie sie im Hauptbildschirm angezeigt wird (ppm oder %).	0,0999,9	
Zero Cal.	Kalibrierung des Nullpunkts des Gasmesssignals. Das Nullgas muss mindestens 5 Minuten vor Beginn der Nullkalibrierung bereitgestellt werden.		
4-20 out Cal.	Kalibrierung des 4-20 mA-Ausgangs für das Gasmesssignal	0099,99	
Concen.	des Analysators. Der Wert muss in mA angegeben werden.		
4-20 in Cal. Temp.	Kalibrierung des Temperatureingangssignals des Analysators. Der Wert muss in Kelvin angegeben werden.	09999	
4-20 in range Temp.	Skalierung des Ausgangssignals für das Temperatureingangssignal des Analysators. Die Werte sollen in Kelvin angegeben werden. Es wird ein Minimum (4 mA) und ein Maximum (20 mA) abgefragt.	09999	
4-20 in Cal. Pres.	Kalibrierung des Druckeingangssignals des Analysators. Der Wert wird in bar angegeben. Ein Minimal- (4 mA) und ein Maximalwert (20 mA) werden abgefragt.	0,0099,99	
4-20 in range Pres.	Skalierung des Ausgangssignals für das Druckeingangssignal des Analysators. Die Werte sind in bar anzugeben.	0,0099,99	

Tabelle 11: Beschreibung der Input-Einstellungen "Analysator Kal." im HMI

X [°C] = Y [Kelvin] + 273,15 X [°F] = ((Y [Kelvin] - 273,15) x 9) / 5 + 32

13.10 Status

Beim Display-Eintrag für "State:" wird der aktuelle Zustand des Messsystems angezeigt. Läuft die Messung ohne Probleme, wird "Meas." angezeigt. Im Falle eines Fehlers wird "Error" angezeigt.

Beim Einschalten wird zunächst "Init." angezeigt. Dann führt das System einen Selbsttest durch. Nach dem Selbsttest geht das System in den "Ruhezustand" über. "Cal." verweist auf den Kalibrierungsmodus. Die sechs möglichen Signale sind wie folgt:

Begriffe auf dem HMI	Status	Beschreibung	
lnit.	Initialisierung	System startet	
Check	Checken	System führt Selbsttest durch	
Idle	Ruhezustand	System ist zur Messung bereit	
Meas.	Messen	System läuft ohne Warnung oder Fehler	
Error	Fehler	Kritischer Fehler	
Cal.	Kalibrieren	System ist im Kalibriermodus	

Tabelle 12: Beschreibung der unterschiedlichen Status-Typen des Messgeräts

13.11 Tasten auf dem HMI

Auf dem Deckel des HMI befinden sich vier Tasten. Jede Taste hat eine vom Modus abhängige Funktion. Es gibt zwei Modi: "Normale Eingabe" und "Editieren".

G	ок	
Oxygen Conc. (ppm): R2: Trans. (%): Pres. Bar: Temp. (C): State: SN: 200121-00	20.95 92.02 98.1 1.0 22.4 Meas. 1	
0	0	

Abbildung 43: HMI-Tasten

HMI-Tasten		Normale Eingabe	Bearbeiten
	Up	Aufwärts	Ziffer erhöhen
	Down	Abwärts	Ziffer verringern
	Links/zurück	Zum letzten Menü zurück	Nach links gehen
ОК	Bestätigen	Punkt auswählen	Änderungen/Wert bestätigen

Tabelle 13: Beschreibung der Tastenfunktionalität

13.12 Admin-Passwort

Zur Änderung von Parametern, Einstellungen, Offsets oder der Skalierung von AINx/AOUTx ist ein Passwort erforderlich.

Bei dem folgenden Passwort ist auf Groß- und Kleinschreibung zu achten: XXXX

Abbildung 44: HMI-Admin-Passwort – geben Sie XXXX ein, um zum Admin-Menü zu gelangen

Um das Admin-Passwort einzugeben, drücken Sie oder die Taste ^{OC}. Tippen Sie das Passwort XXXX, indem Sie die spezifische Ziffer erhöhen oder verringern und gehen Sie nach links, um die nächste Ziffer anzupassen.

Abschließend drücken Sie 🔍 zur Bestätigung. Nach der Bestätigung der korrekten Passworteingabe öffnet sich das Admin-Menü. Falls ein falsches Passwort bestätigt wurde, wird das Hauptmenü angezeigt. Das Standard-Admin-Passwort lautet: **0000**.

13.13 Service-Menüführung

Das mit einem anderen Passwort aufrufbare Service-Menü ist M&C TechGroup vorbehalten und bietet weitergehende Zugriffs- und Einstellmöglichkeiten sowie Diagnosewerte (z.B. Temperaturen).

14 WebServer-Anwendung

Die WebServer-Anwendung ermöglicht die Überwachung der Parameter des In-situ-Laser-Analysators, d.h. der Transmissionswerte oder der Skalierung der Eingangs- und Ausgangsparameter, die für die korrekte Einstellung des Geräts erforderlich sind. Diese Parameter sind in der Konfiguration des Analysators verfügbar.

14.1 Kommunikationsaufbau mit dem ILA1-X000-EX

Damit die Kommunikation zwischen dem ILA-Analysator und dem Computer reibungslos: funktioniert, muss ein Router mit integriertem DHCP-Server angeschlossen werden. Standardmäßig hat der ILA-Analysator eine automatische IP-Konfiguration und benötigt den DHCP-Server, um ihm eine IP-Adresse zu geben.

Verwenden Sie keinen anderen Browser als **Firefox**, um die Kommunikation herzustellen. Um die neueste Version des Firefox-Browsers herunterzuladen, besuchen Sie die Mozilla-Homepage unter: https://www.mozilla.org/de/firefox/new/

Erkundigen Sie sich bei Ihrer IT-Abteilung, ob die Verwendung einer automatischen IP-Adressierung (DHCP) mit dem von Ihnen verwendeten Computer kompatibel ist.

Die Kommunikation basiert auf dem Betriebssystem Microsoft Windows 10. Befolgen Sie die nachstehenden Schritte, um die Kommunikation zwischen dem Computer und dem In-situ-Laser-Analysator aufzubauen:

Betätigen Sie die rechte Maustaste auf dem "Start"-Symbol" (1) und öffnen Sie "Network Connections" (2).

Abbildung 45: Webserver-Konfiguration I

∧ 10 0 (↓ ENG 16/01/202

Wählen Sie "Ethernet" (3) mit der linken Maustaste, machen Sie einen Doppelklick auf "Change adapter options" (4) und klicken Sie mit der rechte Taste auf "Ethernet" (5). Um die Eigenschaften dieser Ethernet-Verbindung zu überprüfen/zu ändern, wählen Sie "Properties".

) Home	Ethernet	
Find a setting	P MUClocal Connected	Change adapter options
Network & Internet		4 change mapped of the
Status	Setwork Connections	×
/wiFi	→ → ↑ ♥ > Control Panel > Network and Internet > Network Connections >	Search Network Connections
₽ Ethernet	Ethernet	Nye - LLM
n Dial-up	Mil/Clocal Intel(II) Ethernet Connection (2) L.	
8° VPN		
Pight mode		
ျပဳ Mobile hotspot		
Proxy		
		Service and Servic

Abbildung 46: Webserver Konfiguration II

Settings				- a ×
Home Find a setting P				Related settings Change adapter options Change advanced sharing options
🖨 Status	Setwork Connections			- 🗆 ×
n WiFi		Network Connections View status of this connection View status of this connection	0	Search Network Connections
토 Ethernet	Ethernet MUC.focal			
n Dial-up	WLAN Properties ×	Internetprotokoli, Version 4 (TCP/IPv4) Properties		
ege VPN	Networking Sharing	General Alternative Configuration		
r‰ Flight mode	Connect using:	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.		
ဖျာ Mobile hotspot	Configure This connection uses the following items:	Obtain an IP address automatically		
Proxy	Clent für Microsoft-Netzwerke	IP-address: Subnet mask: Default gateway: 		
	Mcrosoft-LLDP-Treiber A Internetprotokoll, Version 6 (TCP/IPv6) < >	Obtain DNS server address automatically Use the rooms		
	Install Linuxdall Properties Description TCP/IP, das Standardprotokol für WAN-Netzwerke, das den Distenaustausch über verschiedene, miteinander verbundene Netzwerke emolgicht:	Preferred DND server: . Atemative DNS server: .		
	OK Cancel	OK Cancel		ĝ≕ 📰 j
= 📀 🚍 👛 📟			Rain to	stop ∧ 1□ ᡚ // Φ) ENG 11:20 □

Abbildung 47: Webserver Konfiguration III

Wählen Sie "Internet Protocol, Version 4 (TCP/IPv4)" (6) und gehen Sie zu "Properties". Überprüfen Sie, ob die Einstellungen wie folgt sind: "Obtain an IP address automatically" (7) and "Obtain DNS server address automatically" und übernehmen Sie ggf. die Änderungen.

Danach können Sie den Webserver starten:

- 1. Öffnen Sie Mozilla Firefox als Ihren Internet-Browser.
- 2. Geben Sie die IP-Adresse des Geräts ein (XXX.XXX.XXX) (die IP-Adresse hängt von der Zuweisung durch den DHCP-Server ab und kann z.B. auf dem HMI in der unteren Zeile abgelesen werden)
- 3. Die WebServer-Anwendung öffnet sich, wenn die Ethernet-Verbindung aufgebaut ist.

14.2 Webserver – Messfenster

Abbildung 48: Webservice Benutzerzugangslevel – Messfenster

Die folgenden Funktionen sind auf der rechten Seite des Messfensters:

Funktionen Messfenster	
Funktionen	Beschreibung
Zeitfenster	Die Länge des Zeitintervalls, das grafisch dargestellt werden soll, kann hier eingestellt werden
Datenintervall	Der Webserver sammelt die Daten des Analysators in dem eingestellten Zeitintervall.
Enddatum/Uhrzeit	Bei Eingabe und Bestätigung eines Zeitpunkts werden zurückliegende Messdaten, bis zum eingestellten Zeitpunkt, dargestellt.
Live-Ansicht	Durch Betätigung des Buttons wird von der Darstellung vergangener Messwerte auf die aktuellen Messwerte gewechselt.
Datenexport	Durch Betätigung des Buttons können Messdaten vom Laser als CSV- Datei exportiert werden.

Tabelle 14: Funktionen Messfenster

14.3 Zugang zum Konfigurationsmenü

Der Zugang zur Analysator-Konfiguration ist beschränkt. Um das Passwort zu diesem Teil des Webservice zu erhalten, wenden Sie sich bitte an den M&C-Service.

Abbildung 49: Webservice Login-Fenster

Nach der Anmeldung im Konfigurationsfenster erscheint das Webservice-Fenster. Sie können zum Messfenster zurückkehren, indem Sie die Return-Taste drücken.

14.4 Webservice – Konfigurationsmenü

Die folgenden Einstellungen können im Konfigurationsmenü vorgenommen werden:

Konfiguration des Analysators:

- Kalibrierung des Analysators (Mehrpunkt-Kalibrierung) für zwei Messbereiche
- Konfiguration und Kalibrierung der Analogausgänge
- Anpassung der CAN-Bus-ID

Einstellungen der Temperatursonde

- Temperatursondenmodus (4-20 mA / konstant)
- Skalierung des Minimalwerts des 4-20 mA-Eingangs für die Temperatur
- Skalierung des Maximalwerts des 4-20 mA-Eingangs für die Temperatur
- Temperatursondenkalibrierung

Einstellungen der Drucksonde

- Drucksondenmodus (RS485 / 4-20 mA / konstant)
- Skalierung des Minimalwerts des 4-20 mA-Eingangs für den Druck
- Skalierung des Minimalwerts des 4-20 mA-Eingangs für den Druck
- Drucksonde Kalibrierung

Konfiguration des HMIs

• Konfiguration und Kalibrierung der Analogausgänge

15 Inbetriebnahme des In-situ-Laser-Analysators

Nach der Kalibrierung, der Installation (mechanisch und elektrisch) und der Ausrichtung gemäß den technischen Spezifikationen ist der In-situ-Laser-Analysator bereit für die Inbetriebnahme.

Abbildung 50: HMI-Display mit Standardprozessparametern

Der Startvorgang dauert etwa 3 Minuten. Beim Starten wird zunächst "Initialisierung" angezeigt. Dann führt das System einen Selbsttest durch. Danach geht das System in den "Ruhezustand" über. Wenn das System auf automatische Messung eingestellt ist, startet es die Messung direkt, nachdem es sich im Ruhezustand befunden hat.

Wenn das System einen Fehler oder eine Warnung aufweist, wird der Bildschirmschoner deaktiviert. Das Wort "Messung", das in einem bestimmten Intervall angezeigt wird, weist auf einen ordnungsgemäßen Betrieb hin. In diesem Fall läuft das System ohne jegliche Warnung oder Fehler.

Bei einem Betrieb ohne HMI startet das System, sobald die Stromversorgung aktiviert wird und das Computersystem, das sich im TDL-Kopf befindet, hochfährt.

Die korrekte Funktion kann mit der WebServer-Anwendung überprüft werden (siehe Kapitel 14 "WebServer-Anwendung").

Abbildung 51: Webservice Benutzerzugangslevel – Messfenster

16 Außerbetriebnahme

Spülen Sie den In-situ-Laser-Analysator mit Instrumentenluft (nur für SO₂) oder Inertgas.

Aggressives Kondensat möglich! Verätzungen durch aggressive Medien möglich!

Tragen Sie bei allgemeinen elektrischen und mechanischen Arbeiten am Analysator persönliche Schutzausrüstung (PSA) entsprechend der Risikobewertung.

17 Wartung

Wir empfehlen alle 6 Monate eine Sichtprüfung des Systems und eine jährliche Wartung.

Die Intervalle zwischen den Wartungsarbeiten hängen von den Prozess- und Systembedingungen in Ihrer Betriebsstätte ab. Die Häufigkeit der Wartung sollte im QA/QC-Plan der Betriebsanlage festgelegt und auf der Grundlage Ihrer Betriebsabläufe aktualisiert werden.

Bei Wartungsarbeiten an Geräten für den Einsatz in explosionsgefährdeten Bereichen sind die entsprechenden nationalen Normen über "Vorschriften für elektrische Anlagen in explosionsgefährdeten Bereichen" zu befolgen. Außerdem müssen alle Sicherheitshinweise und Erläuterungen in diesem Handbuch beachtet werden.

Im Analysator können sich schädliche Messgase befinden. Verhindern Sie, dass potenziell schädliche Gase aus dem offenen Sondenwartungs- und Montageflansch austreten. Spülen Sie diesen Bereich vor der Wartung mit Inertgas oder Luft oder tragen Sie eine geeignete persönliche Schutzausrüstung.

Gefahr durch Laserstrahlung! Laserklasse des Laserkopfes ohne Sonde:

O₂-Laser: Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen

SO₂-Laser: Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten.

Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus.

Aggressives Kondensat möglich! Verätzungen durch aggressive Medien möglich!

Tragen Sie bei allgemeinen elektrischen und mechanischen Arbeiten am Analysator persönliche Schutzausrüstung (PSA) entsprechend der Risikobewertung.

Elektrostatische Entladungen können in explosionsgefährdeten Bereichen als Zündfunken wirken. Vermeiden Sie elektrostatische Aufladung der Gehäuseoberfläche durch Reibung. Reinigen Sie das Gerät nicht mit einem trockenen Tuch.

Die von uns empfohlenen Ersatzteile entnehmen Sie bitte der Ersatzteilliste.

arnung

Explosionsgefahr aufgrund von Verschleiß! Eine regelmäßige Inspektion aller Analysatorteile ist nach dem folgenden Wartungsplan erforderlich.

Untersuchen Sie die folgenden Komponenten	Aktion
Neuausrichtung des Strahls	Wenn die Transmission unter 30 % sinkt, muss die Ausrichtung des Strahls gemäß Kapitel 12 überprüft werden.
Reinigung der Optik	Wenn die Transmission nach der Neuausrichtung des Strahls immer noch unzureichend ist, könnte die Optik verschmutzt sein, und sie sollte gemäß Kapitel 17.2 gereinigt werden ("Keilfenster und Retroreflektor") gereinigt werden.

Tabelle 15: Wartung am System

Bauteile wie Kabelverschraubungen und Schutzstopfen dürfen nur durch gleichwertige Teile mit Baumusterprüfbescheinigung ersetzt werden.

17.1 Reinigung des Lasergehäuses

Das Gehäuse des **In-situ-Laser-Analysators** sollte in angemessenen Zeitabständen überprüft werden. Staubschichten von mehr als 5 mm [ca. 0.2"] müssen sofort entfernt werden.

Um statische Aufladung zu vermeiden, immer mit einem feuchten Tuch reinigen.

17.2 Reinigung der Optik

Gefahr durch Laserstrahlung! Laserklasse des Laserkopfes ohne Sonde: **O₂-Laser:** Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen **SO₂-Laser:** Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten.

Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus.

Die optischen Komponenten wie Keilfenster und Retroreflektoren können mit reinem Isopropanol gereinigt werden. Ist der Schmutz organisch, kann er auch durch Erhitzen auf 900 °C (pyrolytische Reinigung) verbrannt werden, da die Beschichtung für diese Temperatur ausgelegt ist. Für die Reinigung dürfen keine Scheuermittel verwendet werden.

Wenn die Keilfenster aus der Sonde entfernt werden, müssen sie in genau der gleichen Drehposition und Einbaurichtung wieder eingebaut werden. Der Keilwinkel an den Keilfenstern ist sehr klein und mit dem Auge nicht wahrnehmbar. Die Ausrichtung des Keilfensters ist durch einen Pfeil auf dem Außendurchmesser gekennzeichnet.

Bei der Reinigung der optischen Komponenten muss darauf geachtet werden, dass die Antireflexionsbeschichtung nicht zerkratzt wird.

18 Demontage des In-situ-Laser-Analysators

Reinigen sie den Analysator mit Instrumentenluft (nur für SO₂) oder Inertgas.

Aggressives Kondensat möglich! Verätzungen durch aggressive Medien möglich!

Tragen Sie bei allgemeinen elektrischen und mechanischen Arbeiten am Analysator persönliche Schutzausrüstung (PSA) entsprechend der Risikobewertung.

Befolgen Sie diese Warnungen und Sicherheitsanweisungen vor der Demontage:

Gefahr durch Laserstrahlung!

Laserklasse des Laserkopfes ohne Sonde:

O₂-Laser: Laserklasse 3B nach IEC 60825-1, nicht dem Strahl aussetzen

SO₂-Laser: Laserklasse 1M gemäß IEC 60825-1, Laserstrahlung nicht direkt mit optischen Instrumenten betrachten.

Schalten Sie die Stromversorgung vor jeder Montage, Wartung oder Demontage aus.

Im Analysator können sich gefährliche Messgase befinden. Verhindern Sie, dass bei der Demontage potenziell schädliche Gase aus der Sonde austreten.

19 Entsorgung

Am Ende des Lebenszyklus unserer Produkte ist es wichtig, dass Sie die nicht mehr gebrauchsfähigen elektrischen und nicht elektrischen Geräte ordnungsgemäß entsorgen. Um unsere Umwelt zu schützen, befolgen Sie bitte die Regeln und Vorschriften Ihres Landes in Bezug auf Recycling und Abfallmanagement.

20 Risikobeurteilung

Die in diesem Kapitel beschriebene Risikobeurteilung ist für Arbeiten am Produkt gedacht.

Die Gefährdung kann in den Arbeitsschritten Montage, Inbetriebnahme, Wartung, Demontage und im Fehlerfall auftreten. Im normalen Betrieb ist das Produkt durch einen Systemschrank bzw. entsprechende Abdeckungen geschützt.

Qualifiziertem Fachpersonal muss die Arbeiten durchführen.

Für die Arbeiten sind nachfolgende Kenntnisse mindestens erforderlich:

- Unterwiesene Person im verfahrenstechnischen Bereich
- Unterwiesene Person im elektrotechnischen Bereich
- Ausführliche Kenntnis der Betriebsanleitung und der geltenden Sicherheitsvorschriften

Die Systemkomponente entspricht den gängigen Vorschriften gemäß Stand der Wissenschaft und Technik. Trotzdem können nicht alle Gefahrenquelle gemäß technischen Schutzmaßnahmen ausgeschlossen werden. Nachfolgend deshalb die Gefahrenbeurteilung und Expositionsgefahren den oben beschriebenen Arbeitsschritten.

Embracing Challenge

Schwere der Verletzung:

S1 = 1 = leichte (reversible Verletzung) S2 = 2 = ernste (irreversible Verletzung Tod)

Häufigkeit und Dauer:

F1 = 1 = selten oder kurze Gefährdungsexposition

F2 = 2 = häufig (mehr als einmal pro Stunde/Schicht)

Möglichkeit zur Vermeidung oder Begrenzung des Schadens

P1 = 1 = möglich

P2 = 2 = kaum möglich

Abbildung 52: Risikobeurteilung

Vorsicht elektrischer Schlag Versorgungseinheit

Risikorang-Gruppe B-C

Bei der Errichtung von Starkstromanlagen mit Nennspannungen bis 1000V sind die Forderungen der VDE 0100 sowie Ihre relevanten Standards und Vorschriften zu beachten!

Dies gilt auch für eventuell angeschlossene Alarm- und Steuerstromkreise. Grundsätzlich ist vor Öffnen der Baugruppen diese Spannungsfrei zu schalten.

Gasgefahr Stickstoff

Risikorang-Gruppe C

Die Spüleinheit kann mit Stickstoff betrieben werden. Bei Leckage kann der Schrank unter Stickstoffatmosphäre stehen. Entsprechende persönliche Schutzausrüstung (PSA) beachten.

Gasgefahr

Risikorang-Gruppe <mark>A-</mark>B-C

Das Gefährdungspotential hängt hauptsächlich von dem zu messenden Gas ab.

Wenn mit dem Produkt toxische oder Sauerstoff verdrängende oder explosive Gase analysiert werden sollen, ist eine zusätzliche Gefährdungsbeurteilung des Betreibers zwingend notwendig.

Grundsätzlich müssen vor dem Öffnen der gasführenden Teile, die Gaswege mit Inertgas oder Luft gespült werden.

Das Ausströmen von möglicherweise gesundheitsschädlichem Gas aus den offenen Prozessanschlüssen, ist zu verhindern.

Für die zu fördernden Medien sind die entsprechenden

Sicherheitsvorschriften zu beachten. ggf. Die Gas Führenden Teile mit einem geeigneten Inertgas spülen. Das Produkt ist nur mit geeigneter PSA für die Gasleckage bzw. mit einem Monitoring System zu öffnen.

Weiterhin sind die arbeitssicherheitsrelevanten Vorschriften des Betreibers zu beachten.

Gefahr durch Laserstrahlung

Risikorang-Gruppe B

Nur geschultes Personal

Im eingebauten Zustand wird der Laser als Klasse 1 deklariert. Arbeiten am Laser-Analysator und den Klemmen sind nur nach Ausschalten des Lasers durchzuführen, ansonsten gilt die Laserklasse 3B.

Vorsicht Quetschgefahr

Risikorang-Gruppe A

Nur geschultes Personal Baugruppen <40 kg: Die Baugruppe kann durch 1 bis 2 Person befördert werden. Entsprechende persönliche Schutzausrüstung (PSA) beachten.

Die Gewichtsangaben sind in den technischen Daten dieses Produktes beschrieben

Weiterhin sind die arbeitssicherheitsrelevanten Vorschriften des Betreibers zu beachten.

Troubleshooting 21

Problem/ Anzeige	Mögliche Ursache	Fehler- code	Überprüfen/Aktion	M&C- Service
Laserkopf (TDL- System) startet nicht	Keine Stromversorgung		Stromversorgung kontrollieren; überprüfen, ob das Stromkabel korrekt angeschlossen ist.	notwendig
	Parameterdatei unlesbar	40	Die Parameterdatei ist nicht lesbar. M&C- Service kontaktieren, um eine Ver- bindung zum Datenserver herzustellen und das Problem zu untersuchen.	x
	Datenbank unlesbar	41	Die Datenbank ist nicht lesbar. M&C- Service kontaktieren, um eine Ver- bindung zum Datenserver herzustellen und das Problem zu untersuchen.	x
Laserkopf (TDL- System) startet	FPGA-Problem	50	Das FPGA arbeitet nicht richtig. Laserkopf für mindestens 1 Minute abschalten und neu starten.	
nicht vollständig	FPGA-Kommunikations- problem	51	Das FPGA kommuniziert nicht richtig. Den Laserkopf für mindestens 1 Minute abschalten und neu starten.	
	FPGA- Zeitüberschreitung bei der Erfassung aufgetreten	54	Die Erfassung dauerte länger als 30 s. Die Analysator-Parameter kontrollieren.	
	CAN-Bus-Controller funktioniert nicht	62	CAN-Bus arbeitet nicht korrekt. Den Laserkopf für mind. 1 Minute abschalten und neu starten. Verwenden Sie die richtige CAN-Bus-ID	
System startet, aber TDL misst nicht	Problem der Laser- thermalisierung	1	Die Temperaturstabilisierung der Laserdiode ist nicht möglich. M&C- Service kontaktieren, um eine Verbindung zur Wartungsschnittstelle herzustellen und/oder den Laserkopf öffnen, um das Problem zu untersuchen.	х
	Lasertemperatur falsch	4	Die Temperatur der Laserdiode ist nicht korrekt. M&C-Service kontaktieren, um den Laserkopf zu öffnen und den Anschluss des Thermistors der Laserdiode zu überprüfen.	x
	Laseremission zu hoch	11	Die Laserdiode gibt zu viel Leistung ab oder die Referenz-Fotodiode hat ein Problem. M&C-Service kontaktieren, um eine Verbindung mit der Wartungs- schnittstelle herzustellen und/oder den Laserkopf zu öffnen, um das Problem zu untersuchen.	х
	Lasertemperatur zu niedrig	2	Die Laserdiodentemperatur ist zu niedrig (T < 10 °C) für eine ordnungsgemäße	

Problem/ Anzeige	Mögliche Ursache	Fehler- code	Überprüfen/Aktion	M&C- Service notwendia
			Thermalisierung. Sondentemperatur überprüfen.	
	FPGA-Temperatur zu niedrig	52	Die FPGA-Temperatur ist zu niedrig (T < 0 °C). Laserkopftemperatur überprüfen.	
	PCB-Temperatur zu niedrig	55	Die PCB-Temperatur ist zu niedrig (T < - 10 °C). Laserkopftemperatur überprüfen.	
	Laserkopftemperatur zu niedrig	60	Die Laserkopftemperatur ist zu niedrig (T < -40 °C). Laserkopftemperatur überprüfen.	
	Lasertemperatur zu hoch	3	Die Temperatur der Laserdiode ist zu hoch (T > 80 °C) für eine ordnungsgemäße Thermalisierung. Sondentemperatur überprüfen.	
	FPGA-Temperatur zu hoch	53	Die FPGA-Temperatur ist zu hoch (T > 120 °C). Laserkopftemperatur überprüfen.	
	PCB-Temperatur zu hoch	56	Die PCB-Temperatur ist zu hoch (T > 85 °C). M&C-Service kontaktieren, um die Laserkopftemperatur zu checken.	х
	Laserkopftemperatur zu hoch	61	Die Laserkopftemperatur ist zu hoch (T > 80 °C). M&C-Service kontaktieren, um die Laserkopftemperatur zu checken.	
HMI funktioniert nicht	Falsche CAN-Bus-ID		Verwenden Sie die richtige CAN-Bus-ID.	
	Sonne heizt den Laserkopf auf einer Seite auf		Schützen Sie den Laserkopf vor asymmetrischer Sonneneinstrahlung.	
	Schlechte Ausrichtung des Laserstrahls	10	Den Strahl neu ausrichten.	
	Kein Spülgas => Optik ist schmutzig	10	Optik reinigen.	
Geringe Transmission	Mit Staub verunreinigte Optik	10	Optik reinigen und den M&C-Service wegen eines Staubfilters an der Sonde kontaktieren.	
	Laseremission ist zu niedrig	10	Die Laserdiode gibt zu wenig Strom ab oder die Referenz-Fotodiode hat ein Problem. Verbindung zur Wartungs- schnittstelle herstellen und/oder Laserkopf öffnen, um diesen zu untersuchen.	
Messsignal zu hoch	Das System wurde mit dem Spülgasstrom kalibriert und der Spülgasstrom wurde gestoppt.		System ohne Spülgasdurchfluss kalibrieren.	

Problem/ Anzeige	Mögliche Ursache	Fehler- code	Überprüfen/Aktion	M&C- Service notwendig
	Leckage zwischen Pufferzone und Prozesszone bei zu niedrigem Druck in der Pufferzone		Druck in der Pufferzone prüfen und Dichtung zwischen Prozesszone und Pufferzone ersetzen.	
	Prozessgasdruck nicht korrekt		Geeignete Drucksonde verwenden, um eine genauere Kompensation des Messsignals zu erhalten.	
	Prozessgasdruck zu niedrig	120	Prozessgastemperatur anpassen.	
	Prozessgasdruck zu hoch	121	Prozessgastemperatur anpassen.	
	Prozessgastemperatur nicht richtig	-/112	Geeignete Temperatursonde verwenden, um eine genauere Kompensation des Messsignals zu erhalten.	
	Prozessgastemperatur zu niedrig	110	Prozessgastemperatur anpassen.	
	Prozessgastemperatur zu hoch	111	Prozessgastemperatur anpassen.	
	Prozessgastemperatur außerhalb des Bereichs		Prozessgasdruck anpassen.	
	Spülgasdurchfluss ist zu hoch und verdrängt das zu messende Gas aus der Messzone.		Spülgasfluss wie im Handbuch beschrieben einstellen.	
	Leckage zwischen Pufferzone und Prozesszone		Die Dichtung zwischen Pufferzone und Prozesszone ersetzen.	
Massesianal zu	Prozessgasdruck nicht korrekt		Verwenden Sie eine geeignete Drucksonde, um eine genauere Kompensation des Messsignals zu erhalten.	
niedrig	Prozessgasdruck zu niedrig	120	Prozessgastemperatur anpassen.	
	Prozessgasdruck zu hoch	121	Prozessgastemperatur anpassen.	
	Prozessgastemperatur ist nicht korrekt	-/112	Geeigneten Temperaturfühler verwenden, um eine genauere Kompensation des Messsignals zu erhalten.	
	Prozessgastemperatur zu niedrig	110	Prozessgastemperatur anpassen.	
	Prozessgastemperatur zu hoch	111	Prozessgastemperatur anpassen.	

Problem/ Anzeige	Mögliche Ursache	Fehler- code	Überprüfen/Aktion	M&C- Service notwendig
	Prozessgastemperatur außerhalb des Bereichs		Prozessgasdruck anpassen.	
Spülgasbedarf zu hoch	Verwendung eines falschen Druckreglers (mit Entlüftung statt ohne Entlüftung)		Korrekten Druckregler ohne Entlüftung verwenden.	
	Leckage am Laserkopf		M&C-Service kontaktieren, um den O- Ring zu ersetzen	Х

Tabelle 16: Troubleshooting am System

Bei unerwarteten Betriebszuständen wird zwischen kritischen Fehlern, die eine Messung nicht zulassen, und Warnungen, bei denen die Messung fortgesetzt wird, unterschieden.

ID (0-255)	Problem/Anzeige	Beschreibung
1	Laserthermalisie- rungsproblem	Die Temperaturstabilisierung der Laserdiode ist nicht möglich. Verbindung zur Wartungsschnittstelle herstellen und/oder den Laserkopf öffnen, um das Problem zu untersuchen.
2	Lasertemperatur zu niedrig	Die Temperatur der Laserdiode ist zu niedrig (T < 10 °C) für die ordnungsgemäße Thermalisierung. Überprüfen Sie die Sondentemperatur.
3	Lasertemperatur zu hoch	Die Temperatur der Laserdiode ist zu hoch (T > 80 °C) für die ordnungsgemäße Thermalisierung. Überprüfen Sie die Sondentemperatur.
4	Lasertemperatur nicht korrekt	Die Temperatur der Laserdiode ist nicht korrekt. Öffnen Sie den Laserkopf und überprüfen Sie den Anschluss des Laserdioden-Thermistors.
10	Laseremission zu niedrig	Die Laserdiode gibt nicht genug Strom ab oder die Referenz-Fotodiode hat ein Problem. Verbindung zur Wartungsschnittstelle herstellen und/oder Laserkopf öffnen, um das Problem zu untersuchen.
11	Laseremission zu hoch	Die Laserdiode gibt zu viel Strom ab oder die Referenz-Fotodiode hat ein Problem. Verbindung zur Wartungsschnittstelle herstellen und/oder Laserkopf öffnen, um das Problem zu untersuchen.
40	Parameterdatei unlesbar	Es ist nicht möglich, die Parameterdatei zu lesen. Verbindung zum Fileserver herstellen, um das Problem zu untersuchen.
41	Datenbank unlesbar	Es ist nicht möglich, die Datenbank zu lesen. Verbindung zum Fileserver herstellen, um das Problem zu untersuchen.
50	FPGA-Problem	Das FPGA kommuniziert nicht richtig. Laserkopf für mindestens 1 Minute abschalten und neu starten.
51	FPGA- Kommunikations- problem	Das FPGA kommuniziert nicht richtig. Laserkopf für mindestens 1 Minute abschalten und neu starten.
52	FPGA-Temperatur zu niedrig	Die FPGA-Temperatur ist zu niedrig (T < 0 °C). Temperatur des Laserkopfes überprüfen.
53	FPGA-Temperatur zu hoch	Die FPGA-Temperatur ist zu hoch (T > 120 °C). Temperatur des Sensokopfes überprüfen.
54	FPGA- Zeitüberschreitung	Die Erfassung dauerte mehr als 30 Sek. Die Analysator-Parameter kontrollieren.

	bei der FPGA-	
	Erfassung	
	aufgetreten	
	PCB-Temperatur zu	Die PCB-Temperatur ist zu niedrig (T < −10 °C). Temperatur des Laserkopfes
55	niedrig	überprüfen.
	PCB-Temperatur zu	Die PCB-Temperatur ist zu hoch (T > 85 °C). Temperatur des Laserkopfes
56	hoch	überprüfen.
	Laserkopf-	
	Temperatur zu	Die Laserkopftemperatur ist zu niedrig (T < -40 °C). Temperatur des
60	niedrig	Laserkopfes überprüfen.
	Laserkopf-	Die Laserkopftemperatur ist zu hoch. (T > 80 °C). Temperatur des Laserkopfes
61	Temperatur zu hoch	überprüfen.
	CAN-Bus-Controller	Der CAN-Bus funktioniert nicht richtig. Laserkopf für mindestens 1 Minute
62	funktioniert nicht	ausschalten und neu starten.

Tabelle 17: Troubleshooting – Fehlercode-Liste

ID (0-255)	Problem/Anzeige	Beschreibung
100	Transmission zu niedrig	Der Messkanal empfängt nicht genügend Strom. Die Sonde sendet entweder nicht genug (Staub/Verunreinigung) oder ist falsch ausgerichtet. Richten Sie die Sonde neu aus und/oder prüfen Sie, ob das Fenster/der Retroreflektor verunreinigt ist.
101	Messkanal gesättigt	Der Messkanal ist gesättigt. Er empfängt entweder zu viel optische Leistung oder der Kanal hat ein Problem. Verbindung zur Wartungsschnittstelle herstellen und/oder den Laserkopf öffnen, um das Problem zu untersuchen.
102	Qualität der Messung zu niedrig	Die Qualität der Messung ist zu niedrig. Verbindung zur Wartungsschnittstelle herstellen und das Spektrum überprüfen.
110	Gastemperatur zu niedrig	Die Gastemperatur ist zu niedrig (T < -40 °C). Die Messung kann ungenau sein. Gastemperatur erhöhen.
111	Gastemperatur zu hoch	Die Gastemperatur ist zu hoch (T > 600 °C). Die Messung kann ungenau sein. Gastemperatur reduzieren.
112	Gastemperatur- sonde nicht angeschlossen	Die Gastemperatursonde ist nicht angeschlossen. Standardmäßig ist eine Temperatur von 20 °C eingestellt.
120	Gasdruck zu niedrig	Der Gasdruck ist zu niedrig (P < 0 bar). Die Messung kann ungenau sein. Gasdruck erhöhen.
121	Gasdruck zu hoch	Der Gasdruck ist zu hoch (P > 5 bar). Die Messung kann ungenau sein. Gasdruck reduzieren.
122	Gasdrucksonde nicht angeschlossen	Die Gasdrucksonde ist nicht angeschlossen. Standardmäßig wird ein Druck von 1 bar gewählt.
150	CAN-Bus-Gerät nicht angeschlossen	Es ist kein CAN-Bus-Gerät an den Laserkopf angeschlossen. Ein CAN-Bus-Gerät an den Laserkopf anschließen.

Tabelle 18: Troubleshooting – Liste der Warncodes

22 Anhang 1: Modbus TCP-Konfiguration

Informationen zur Modbus-TCP-Konfiguration: IP-Adresse: DHCP definiert; TCP-Port-Nummer: 502

Beschreibung	Тур	Lesen/	Einheit	Format	Funk	Adresse	Adresse	Spalte 1
		Schrei ben			tion	(HEX)	ohne offset (DFC)	
Error	Coil	R		boolean	2	2711	1	0
Relay_in	Coil	R		boolean	2	2719	2	1
Relay_out	Coil	R		boolean	2	2721	3	2
Heater_1	Coil	R		boolean	2	2729	4	3
Heater_2	Coil	R		boolean	2	2731	5	4
GPIO_0	Coil	R		boolean	2	2739	6	5
GPIO_1	Coil	R		boolean	2	2741	7	6
GPIO_2	Coil	R		boolean	2	2749	8	7
G0	Coil	R		boolean	2	2751	9	8
G1	Coil	R		boolean	2	2759	10	9
Laser_ON	Coil	R		boolean	2	2761	11	10
PID_regulation_O	Coil	R		boolean	2	2769	12	11
Diode_temperatur e stabilization	Coil	R		boolean	2	2771	13	12
Gas concentration	Input register	R	ppb	uint32	3	9C41	1	0
Gas concentration 2	Input register	R	ppb	uint32	3	9C43	3	2
Gas concentration	Input register	R	ppb	uint32	3	9C45	5	4
Gas concentration	Input register	R	ppb	uint32	3	9C47	7	6
Gas concentration 5	Input register	R	ppb	uint32	3	9C49	9	8
Confidence index gas	Input register	R		uint16	3	9C4B	11	10
Transmission	Input register	R	%	uint16	3	9C4C	12	11
Diode temperature setpoint	Input register	R	0,01 °C	uint16	3	9C4D	13	12
Diode	Input register	R	0,01 °C	uint16	3	9C4E	14	13
Diode	Input	R	mV	uint16	3	9C4F	15	14
temperature output	register							
Gas temperature	Input register	R	0,01 ℃	uint16	3	9C50	16	15
Gas pressure	Input register	R	mbar	uint16	3	9C51	17	16
Analyzer temperature	Input register	R	0,01 ℃	uint16	3	9C52	18	17

Beschreibung	Тур	Lesen/ Schrei ben	Einheit	Format	Funk tion	Adresse (HEX)	Adresse ohne offset (DEC)	Spalte 1
Processor	Input	R	0,01 ℃	uint16	3	9C53	19	18
temperature	register							
PCB temperature	Input register	R	0,01 ℃	uint16	3	9C54	20	19
Analyzer pressure	Input register	R	mbar	uint16	3	9C55	21	20
Analyzer state	Input register	R		uint16	3	9C56	22	21
Analyzer error	Input	R		uint16	3	9C57	23	22
code	register							
FPGA version	Input register	R		String (20 bytes)	3	9C69	41	40
Firmware version	Input	R		String (20	3	9C73	51	50
	register			bytes)				
Serial number	Input	R		String (20	3	9C7D	61	60
	register			bytes)				

Tabelle 19: Modbus TCP-Registerkarte

Skalierung auf ganzzahligen Wert (0 - 27648) bei max. Fehlerstrom 22 mA

9	System	Gas- konzentration	Transmission	AI	AO	Beschreibung
Integer	Hexadecimal	0 to 10 [ppm]	0 to 100 [%]	4 to 20 [mA]	4 to 20 [mA]	
32767	7FFF	11.250	118.51	22.00	22.00	Overflow
32512	7F00					Oveniow
32502	7EF6	11.159	117.59	21.85	21.85	Overshoot
27649	6C01					range
29126	71C6	10	100	20	20	
21845	5555	7,5	75	16.00	16.00	Nominal range
1	1	0.00034	0.0034	4 + 549.34 nA	4 + 549.34 nA	Nominal range
0	0	0	0	4	4	
-1	FFFF					Undershoot
-5124	EBFC	-1.759		1.185	1.185	range
-5125	EBFB					Underflow
-32768	8000					Undefilow

Tabelle 20: Skalierung auf ganzzahligen Wert (0 - 27648) bei max. Fehlerstrom 22 mA

23 Anhang 2: Modbus RTU-Konfiguration

Die RS-485-Kommunikation mit Modbus-RTU ist bereit zur Kommunikation mit einem Keller-Drucksensor.

RS-485-Kommunikationseinstellungen:

Band rate:	9600 bps
Data bits:	8
Parity:	Keine Parität
Start bits:	1
Stop bits:	1
Flow control:	Keine
Modbus RTU slave address:	245
	(Standard)

Tabelle 21: RS-485 Kommunikationseinstellungen (Modbus RTU)

Das Modbus-RTU-Modul antwortet auf die Anfrage "Read Input Register", jede andere Anfrage endet mit der Antwort "Illegal function".

Beschreibung	Тур	Lesen/ Schreibe n	Einhei t	Format	Funktio n	Adress e (HEX)	Adress e ohne offset (DEC)	Spalte 1
Error	Coil	R		boolean	2	2711	1	0
Relay_in	Coil	R		boolean	2	2719	2	1
Relay_out	Coil	R		boolean	2	2721	3	2
Heater_1	Coil	R		boolean	2	2729	4	3
Heater_2	Coil	R		boolean	2	2731	5	4
GPIO_0	Coil	R		boolean	2	2739	6	5
GPIO_1	Coil	R		boolean	2	2741	7	6
GPIO_2	Coil	R		boolean	2	2749	8	7
GO	Coil	R		boolean	2	2751	9	8
G1	Coil	R		boolean	2	2759	10	9
Laser_ON	Coil	R		boolean	2	2761	11	10
PID_regulation_ON	Coil	R		boolean	2	2769	12	11
Diode_temperature_stabiliza tion	Coil	R		boolean	2	2771	13	12
Gas concentration 1	Input register	R	ppb	uint32	3	9C41	1	0
Gas concentration 2	Input register	R	ppb	uint32	3	9C43	3	2
Gas concentration 3	Input register	R	ppb	uint32	3	9C45	5	4
Gas concentration 4	Input register	R	ppb	uint32	3	9C47	7	6
Gas concentration 5	Input register	R	ppb	uint32	3	9C49	9	8
Confidence index gas	Input register	R		uint16	3	9C4B	11	10
Transmission	Input register	R	%	uint16	3	9C4C	12	11
Diode temperature setpoint	Input register	R	0.01 °C	uint16	3	9C4D	13	12
Diode temperature	Input register	R	0.01 °C	uint16	3	9C4E	14	13

Beschreibung	Тур	Lesen/ Schreibe	Einhei t	Format	Funktio n	Adress e	Adress e ohne	Spalte 1
		n				(HEX)	offset (DEC)	
Diode temperature output	Input register	R	mV	uint16	3	9C4F	15	14
Gas temperature	Input register	R	0.01 °C	uint16	3	9C50	16	15
Gas pressure	Input register	R	mbar	uint16	3	9C51	17	16
Analyzer temperature	Input register	R	0.01 °C	uint16	3	9C52	18	17
Processor temperature	Input register	R	0.01 °C	uint16	3	9C53	19	18
PCB temperature	Input register	R	0.01 °C	uint16	3	9C54	20	19
Analyzer pressure	Input register	R	mbar	uint16	3	9C55	21	20
Analyzer state	Input register	R		uint16	3	9C56	22	21
Analyzer error code	Input register	R		uint16	3	9C57	23	22
FPGA version	Input register	R		String (20 bytes)	3	9C69	41	40
Firmware version	Input register	R		String (20 bytes)	3	9C73	51	50
Serial number	Input register	R		String (20 bytes)	3	9C7D	61	60

Tabelle 22: Modbus-RTU	Eingaberegisterkarte
------------------------	----------------------

Siehe elektrische Anschlüsse in Kapitel 10.

24 Anhang 3: Batteriedaten

Batteriemodell: ET2016C-H

Nr.	Parameter	Wert
3.1	Betriebsspannung	2,7 ~ 1,5 V
3.2	Nominalkapazität (Standardladung/Entladung)	20,0 mAh
3.3	Mindestkapazität (Standardladung/Entladung)	Min. 18,0 mAh
3.4	Nennspannung	2,3 V
3.5	1CmA	20 mA
3.6	Standard Charge	CV (Konstantspannung); Spannung: 2,7 V Abschaltstrom: 0,02 CmA (@ 25 ±2 °C, 65 ±20 % RH)
3.7	Max. Ladestrom	Keine Begrenzung
3.8	Standardentladung	CC (Konstantstrom); Strom: 0,1 CmA Abschaltspannung: 1,5 V (@ 25 ±2 ℃, 65 ±20 % RH)
3.9	Spitzenentladestrom *	45 mA
3.10	Zellgewicht	Weniger als 3 g
3.11	Zelldurchmesser	20,0 ±0,2 mm (außer Klemmen)
3.12	Zelldicke	1,95 +0,2/-0,1 mm (einschl. Klemmen)
3.13	Leerlaufspannung	2,35 ±0,05 V
3.14	Technologie	Positive Elektrode: LiCoO ₂ keramische Platte mit Hochgeschwindigkeits-Li-Ionenleitfähigkeit durch Kristallorientierung. Negative Elektrode: Li ₄ Ti ₅ O ₁₂ (LTO) Elektrolyte: Li[BF4] (Lithiumtetrafluorborat) mit organischem Lösungsmittel
3.15	Semi-Solid State Battery (EnerCera® Coin)	Die Batterie besteht aus einem vollkeramischen, gestapelten monolithischen Körper mit einer minimalen Menge flüssiger Elektrolyte.
3.16	Konstantspannungsladung	OK
3.17	Innenwiderstand (Ω)	10
3.18	Betriebstemperatur (empfohlen)	-40 bis 105 °C
3.19	Montagemethode	Reflow-Löten
3.20	Merkmale	Hohe Hitzebeständigkeit

* Spannungsabfall von 0,5 V innerhalb von 1 Sekunde.

EnerCera[®] ist ein eingetragenes Warenzeichen für eine wiederaufladbare Li-Ionen-Batterie von NGK Insulators LTD, Japan.

Tabelle 23: Batteriemodell: ET2016C-H

Anhang 4: ATEX-Einzelheiten 25

Parameter	Größe/Eigenschaften
Breite der druckfesten Verbindung bei Schutzniveau "db" (Ge	häuse)
Gasgruppe IIC, Staubgruppe IIIC	
Flacher Spalt (auch nach 5.2.7) für ein Volumen V \leq 500 cm ³	≥ 9,5 mm
Einschränkung durch Acetylen/Luft-Gemische s	Max. Spaltbreite 0,04 mm
Mindestlänge des druckfesten Spaltes gemäß Dokumentation (technische Zeichnung)	≥ 9,5 mm
Maximale Spaltbreite des druckfesten Spaltes laut Dokumentation (technische Zeichnung)	≤ 0,04 mm
Spalte im Gewinde	-
Mindestanzahl der eingesetzten Gewinde laut Dokumentation (technische Zeichnung)	≥ 5 mm
Einschraubtiefe mit zylindrischem Gewindespalt (Volumen > 100 cm³)	≥ 8 mm
Gewindesteigung	≥ 0,7 mm
Gewindeform und Güteklasse	Medium, Toleranzen nach ISO 965-1 und ISO 965-3
Konische Gewindesteigung	
Kegelförmiges Außengewinde (Swagelok SS 6M0):	Es müssen mindestens 4,5 volle Umdrehungen vorhanden sein. (siehe Tabelle 5)

Tabelle 24 ATEX-Einzelheiten zum Laserkopf

Kom- ponente	Her- steller	Тур	ΑΤΕΧ	ATEX-Zertifikat	Datum	IECEx	Umgebungs- temperaturbereich	IP- Klass e
Komplette Einheit	M&C Techgrou p Germany GmbH	ILA1-X000- EX					Tumgebung -40 °C bis +59 °C: T6 ≤ 85 °C Tumgebung -40 °C bis +65 °C: T5 ≤ 100 °C	IP65
Be- und Entlüftungs- vorrichtung	M&C Techgrou p Germany GmbH	MC95A	II 2 G Ex db IIC Gb	IBEXU 15 ATEX1028 U	04.05.2015	IECEX IBE 15.0013U	T _{Umgebung} -20 °C bis +80 °C	n.a.
Einzeldraht- durch- führung	Quintex	LBSM24122/ MCRA	II 2G Ex db IIC T4/T5/T6 Gb II 2G Ex eb IIC T4/T5/T6 Gb II 2 D Ex tb IIIC T135 °C, T100 °C, T135 °C, T85 °C Db IP66 I M2 Ex db I Mb	EPS 11 ATEX 1342 X	17.05.2021	IECEX EPS 11.0004X	-55 °C bis +115 °C; wegen der O-Ring- Begrenzung der oberen Umgebungs- temperatur +70 °C	IP66/ IP68
Ex-e- Gehäuse	Rose Systemte chnik	06.08 11 088 (Ex Polyester standard) mit HF- Dichtung	II 2 G Ex db eb ia [ia] mb IIC T4, T5, T6 Gb II 2 D Ex tb IIIC T85 ℃, T100 ℃, T135 ℃ Db	PTB 00 ATEX 1002	26.03.2018		-40 °C bis +90 °C	IP66/ IP68
Kabelver- schraubung M 16	Pflitsch	bg216msHT ex	II 2G Ex eb IIC Gb II 2D Ex tb IIIC Db	PTB 11 ATEX 1007X xx C 0102	22.04.2020	IEC 60079- 0:2017, IEC 60079-7:2017 IEC 60079- 31:2013	-55 °C bis +160 °C	IP66/ IP68
Kabelver- schraubung M 20	Pflitsch	bg220msHT ex	II 2G Ex eb IIC Gb II 2D Ex tb IIIC Db	PTB 11 ATEX 1007X xx C 0102	22.04.2020	IEC 60079- 0:2017, IEC 60079-7:2017 IEC 60079- 31:2013	-55 °C bis +160 °C	IP66/ IP68

Tabelle 25 ATEX-Einzelheiten von im System verwendeten Komponenten

Anhang 5: Zertifikate 26

	1	BExU Institut für Sicherheits An-Institut der TU Bergakader	i technik GmbH nie Freiberg
[1]	EU-BAUMU	STERPRÜFBESCHEINIGUN	G
[2]	Geräte und Schu in explosionsgefa	itzsysteme zur bestimmungsgemäßen Ver ährdeten Bereichen, Richtlinie 2014/34/EU	wendung
[3]	EU-Baumusterpi	üfbescheinigung Nummer IBExU24ATE	EX1007 X Ausgabe 0
[4]	Produkt:	In-situ Laser Analysator Typ: ILA1-X000-EX	
[5]	Hersteller:	M&C TechGroup Germany GmbH	
[6]	Anschrift:	Rehhecke 79 40885 Ratingen GERMANY	
[7]	Dieses Produkt Bescheinigung s	sowie die verschiedenen zulässigen Au owie den darin aufgeführten Unterlagen fe	sführungen sind in der Anlage zu dieser stgelegt.
[8]	IBExU Institut Übereinstimmun Rates vom 26. Gesundheitsanfo Verwendung in e	für Sicherheitstechnik GmbH, notifizie g mit Artikel 17 der Richtlinie 2014/34/E Februar 2014, bestätigt, dass dieses P orderungen für die Konzeption und den Bau xplosionsgefährdeten Bereichen aus Anha	erte Stelle mit der Nummer 0637 in U des Europäischen Parlaments und des Produkt die wesentlichen Sicherheits- und u von Produkten zur bestimmungsgemäßen ang II der Richtlinie erfüllt.
	Die Untersuchu festgehalten.	ngs- und Prüfergebnisse werden in de	m vertraulichen Prüfbericht IB-23-3-0085
[9]	Die Beachtung Übereinstimmun	der wesentlichen Sicherheits- und g mit folgenden Normen gewährleistet:	Gesundheitsanforderungen wurde in
	EN IEC 60079-0:2	2018 EN 60079-1:2014 EN IEC 60 EN 60079-31:20	0079-7:2015/A1:2018 EN 60079-28:2015 14
	Hiervon ausgeno	ommen sind jene Anforderungen, die unter	Punkt [18] der Anlage aufgelistet werden.
[10]	Ein "X" hinter o Bedingungen für sind.	ler Bescheinigungsnummer weist darauf die Verwendung unterliegt, die in der An	hin, dass das Produkt den besonderen lage zu dieser Bescheinigung festgehalten
[11]	Diese EU-Baum des angegebene gelten weitere A dieser Bescheini	usterprüfbescheinigung bezieht sich ausso en Produktes. Für den Fertigungsprozes unforderungen der Richtlinie. Diese fallen gung.	chließlich auf die Konzeption und den Bau s und die Bereitstellung dieses Produkts i jedoch nicht in den Anwendungsbereich
[12]	Die Kennzeichnu	ng des Produktes muss Folgendes beinha	Iten:
4	ⓑ II (1)2 G Ex (ⓑ II (1)2 D Ex t	db eb [op is Ga] IIC T6 Gb 🕢 🕢 II (b [op is Da] IIIC T85 °C Db 🖓 II (1)2 G Ex db eb [op is Ga] IIC T5 Gb 1)2 D Ex tb [op is Da] IIIC T92 °C Db
	Ta	40 °C +59 °C	T _a -40 °C +65 °C
IBExI Fuch	U Institut für Siche smühlenweg 7	rheitstechnik GmbH	Tel.: +49 (0)3731 3805-0 Fax: +49 (0)3731 3805-10
0959 Im Au	9 Freiberg, ĞERM/ uftrag	IBEXU Stelle Explore	Bescheinigungen ohne Siegel und Unterschrift haben keine Gültigkeit. Bescheinigungen dürfen nur vollständig und unverändert vervielfältigt werden.
Dipl	Ing. K. Willamows	ki (notifizierte Stelle, Nummer 063	Freiberg, 04.03.2025
		E. Comort	enda - Electronic Contract

	IEC	Ex Certificate Conformity	
	INTERNATIONAL ELECT IEC Certification System for rules and details of the I	ROTECHNICAL COMMISSION n for Explosive Atmospheres ECEx Scheme visit www.iecex.com	
Certificate No.:	IECEx IBE 24.0007X	Page 1 of 3	Certificate history:
Status:	Current	Issue No: 0	
Date of Issue:	2025-03-04		
Applicant:	M&C TechGroup Germany GmbH Rehhecke 96 40885 Ratingen Germany		
Equipment:	In-situ Laser Analyzer type ILA1-X000-EX		
Optional accessory:			
Type of Protection:	Ex db, Ex eb, Ex op is, Ex tb		
Marking:	Ex db eb [op is Ga] IIC T6 or T5 Gb		
	Ex tb [op is Da] IIIC T85 °C or T100 °C Db		
	T _a -40 °C +59 °C or +65 °C		
Certification Body:	benall of the IECEX		
Position:		Head of department Certification Body	
Signature: (for printed version)		11/2	
Date:			
(for printed version)	1	04.03.2025	
 This certificate and s This certificate is not The Status and auther 	chedule may only be reproduced in full. transferable and remains the property of the issuing boo nticity of this certificate may be verified by visiting www.	ly. lecex.com or use of this QR Code.	
Certificate issued	by:		
IBExU Institut Fuchsmühlenwe 09599 Freiberg Germany	für Sicherheitstechnik GmbH g 7	IBE	:XU

IECEx	IE	ECEx Certificate		
тм	of Conformity			
Certificate No.:	IECEx IBE 24.0007X	Page 2 of 3		
Date of issue:	2025-03-04	Issue No: 0		
Manufacturer:	M&C TechGroup Germany GmbH Rehhecke 96 40885 Ratingen Germany			
Manufacturing locations:				
This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEx Scheme Rules, IECEx 02 and Operational Documents as amended				
STANDARDS : The equipment and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards				
IEC 60079-0:2017 Edition:7.0	Explosive atmospheres - Part 0: Equipment - General requirements			
IEC 60079-1:2014 Edition:7.0	Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d"			
IEC 60079-28:2015 Edition:2	Explosive atmospheres - Part 28: Protection of equipment and transmission systems using optical radiation			
IEC 60079-31:2022 Edition:3.0	Explosive atmospheres – Part 31: Equipment dust ignition protection by enclosure "t"			
IEC 60079-7:2017 Edition:5.1	Explosive atmospheres - Part 7: Equipment protection by increased safety "e"			
This Certificate does not indicate compliance with safety and performance requirements other than those expressly included in the Standards listed above.				
TEST & ASSESSMENT REPORTS: A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in:				
Test Report: DE/IBE/ExTR24.0002/00				
Quality Assessment Report: DE/BVS/QAR17.0009/07				

	IECEx Certificate of Conformity			
Certificate No.:	ECEx IBE 24.0007X	Page 3 of 3		
Date of issue: 2	2025-03-04	Issue No: 0		
EQUIPMENT: Equipment and systems	s covered by this Certificate are as fol	llows:		
The In-situ Laser Analyz probe which includes a receiver are located in t	zer ILA1-X000-EX is a high-performal measuring section, probe flange and he sensor head, the beam reflector is	nce analyzer for industrial and potential compliance applications. It consists of a sensor head as well as a separate HMI unit (optionally). The transmitter and placed inside the tip of the probe in the measuring section.		
Technical Data				
- Nominal voltage:	24 V DC			
- Power:	max. 6 VA			
- Ambient temperature	range: -40 °C up to +59 °C o	pr +65 °C		
- Property class fasten	- Property class fastening screws: A4-70 according to ISO 4762			
SPECIFIC CONDITION	S OF USE: YES as shown below:			
must not be made c • Only the fastening s • The In-situ Laser Ar • Only cable glands a	In the basis of values specified in tabl crews specified by the manufacturer alyzer must be protected against inte nd plugs with sealing ring must be us	es 2 and 3 of IEC 60079-1. (strength class min. A4-70) according to ISO 4762 may be used. nsive electrostatic charging. ed.		